Perbandingan Algoritme C4.5 and Naive Bayes untuk Mengetahui Masa Studi

Siti Nur‘Aisyah

Abstract


This research was  to make comparisons between Algorithms C4.5 and Naive Bayes which is implemented on the data of graduation of Universitas Amikom Purwokerto students from 2011 to 2013 for Strata 1, Informatics Engineering study program for the renowned study. Attributes are NIM, gender, Achievement Index Semester 1 through 6 and graduation period. The test results with both algorithms use the Selection-Based Correlation feature feature (CFS) and testing methods using Confusion Matrix. Known Algorithm C4.5 has an accuracy of 72.679% with Precision value of 0.742, Remember 0.936 and F - Measure 0.828 whereas Naive Bayes obtained an accuracy of 73.6074% with a Precision value of 0.755, Remember 0.924 and F - Measure 0.831

Keywords


Perbandingan Algoritme; C4.5; Naive Bayes; Masa Studi; Data Mining

References


Peraturan Menteri Riset, Teknologi, Dan Pendidikan Tinggi Republik Indonesia Nomor 2 Tahun 2016.

Peraturan Menteri Riset, Teknologi, Dan Pendidikan Tinggi Republik Indonesia Nomor 2 Tahun 2015.

Witten, Ian H., Frank, Eibe. 2005. Data Mining Practical Machine Learning Tools and Techniques, Second Edition.Morgan Kaufmann Publishers is an imprint of Elsevier. 500 Sansome Street, Suite 400, San Francisco, CA 94111.

Written, I. H., Frank, E., & Hall, M.A. 2011. Data Mining Practical Machine. Burlington: Elsevie

Rizki Wahyudi, Hendia Marcos and Uswatun Hasanah, "Algorithm Evaluation For Classification “Phishing Websites” Using Several Classification Algorithms", 2018 3rd International Congerence On Information Technology Information System and Electrical Engineering(ICITISEE) Yogyakarta Indonesia.

Irnawati. (2016). Analisa Data Mining untuk Klasifikasi Kelulusan Mahasiswa Universitas Amikom Purwokerto Berdasarkan Algoritma C4.5. Purwokerto.

Kusrini dan Luthfi, E. T.2009. Algoritma Data Mining. Yogyakarta : Andi Offset.

Septian Nugroho, Y. (2014). Data Mining Menggunakan Algoritma Naive Bayes Untuk Klasifikasi Kelulusan Mahasiswa Universitas Dian Nuswantoro. Jurnal Ilmiah, 21 (2).

Gorunescu,F.2011. Data mining Concepts, Models and Techniques. Verlan Berlin Heidelberg: Spinger.

Nijhawan dkk. 2017. “The Analytical Comparison of ID3 and C4.5 using WEKA”. International Journal of Computer Applications (0975 – 8887) Volume 167 – No.11, June 2017.

S. kotagiri Raju and M. R. Murty, “Support Vector Machine with K-fold Cross Validation Model for Software Fault Prediction,” Int. J. Pure Appl. Math., vol. 118, no. 20, pp. 321–334, 2018.

Gorunescu, F. 2011. Data Mining Concept, Model and Techniques. Springer-Verlag: Berlin.




DOI: https://doi.org/10.36596/jcse.v1i2.75

Refbacks

  • There are currently no refbacks.


Journal of Computer Science and Engineering (JCSE)
ISSN 2721-0251 (online)
Organize by : ICSE (Institute of Computer Sciences and Engineering), Fakultas Ilmu Komputer UBY
Published by : ICSE (Institute of Computer Sciences and Engineering)
Perum Pasir Indah Blok K. No. 22, Pasir Lor, Kec. Karanglewas, Kabupaten Banyumas,
Jawa Tengah 53161, Indonesia
Website : http://icsejournal.com/index.php/JCSE/
Email: jcse@icsejournal.com

Creative Commons License is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.