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This study evaluates the performance of three tree boosting algorithms, Random 

Forest (RF), XGBoost (XGB), and LightGBM (LGBM), in detecting phishing 

websites using a phishing dataset based on HTML, URLs, and network features. 

Two hyperparameter optimization strategies were tested: Hyperband search 

(HalvingRandomSearchCV) and stacking ensemble combining all three models. 

The evaluation was conducted based on five main metrics: accuracy, precision, 

recall, F1-score, and AUC‑ROC. The results indicate that LightGBM tuned via 

Hyperband achieved the highest performance (accuracy 0.9724; AUC‑ROC 

0.9702), followed by ensemble tuned (accuracy 0.9697; AUC‑ROC 0.9684). SHAP 

analysis was used to interpret the contribution of key features in predicting phishing 

websites. The AUC‑ROC difference of 0.0034 points from the XGBoost baseline 

(0.9668) confirms the effectiveness of Hyperband tuning and stacking ensembles 

for phishing detection. 
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1. Introduction 

Phishing websites are a frequent and destructive cybersecurity problem. Phishing websites are 

created by cybercriminals who develop fake websites that look like actual businesses in order to steal 

user passwords, personal information, and financial data. Due to the fact that the frequency and level 

of sophistication of these assaults are growing on a global scale, automated detection through 

machine learning has become an essential tool for phishing prevention. During the detection phase, 

it is common practice to extract information from URLs, HTML structure, and network metadata. 

These elements are subsequently utilized in classification models. Machine learning algorithms for 

phishing detection have been evaluated in a number of previous studies, such as Support Vector 

Machines, Random Forest, and XGBoost [1], [2]. These algorithms have produced promising results, 

but they continue to face challenges in terms of performance consistency and hyperparameter 

optimization[3], [4]. 

Numerous investigations have utilized ensemble models like Random Forest, XGBoost, and 

LightGBM because of their capacity to manage nonlinear and extensive datasets[5], [6], [7].  The 

efficacy of these algorithms significantly relies on the selection and optimization of suitable 

hyperparameters[8]. Many prior research continue to employ grid search or random search 

methodologies, which are laborious and inefficient[9], [10], [11].  The Hyperband method presents 

itself as an adaptive and efficient strategy for hyperparameter tuning, utilizing the notion of 

successive halving[12], [13], which remains relatively underexplored in the field of phishing 

detection. 

Model interpretability is a key difficulty, particularly for security applications that require 

transparency in decision-making. This is in addition to the performance elements that are a challenge. 

Regrettably, the majority of the research that has been done in the past has concentrated on accuracy 

and other prediction metrics without providing an explanation of how characteristics actually 

contribute to the classification outcomes [14], [15]. Interpretation methods such as SHAP (SHapley 
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Additive exPlanations), which are founded on game theory and are capable of delivering both local 

and global explanations for model predictions [16], [17], [18], have not yet been widely utilized in 

the context of tuning and ensemble combinations for the purpose of phishing detection. 

This study provides a thorough method that closes this gap by (1) evaluating three well-known 

ensemble models (Random Forest, XGBoost, and LightGBM) as well as a stacking model at 

baseline; (2) optimizing performance on each base model through Hyperband tuning; (3) Using a 

meta-learner-based stacking ensemble on the optimized models, stacking allows for combining the 

strengths of multiple base models by leveraging a higher-level learner, which frequently results in 

improved generalization and robustness compared to individual models or simple averaging 

techniques (4) interpreting the best model using SHAP techniques to transparently explain feature 

contributions. This method not only increases the accuracy of phishing detection but also improves 

the interpretability and speed of model training. 

2. Method 

Presented in this section is a description of the research methodology, which consists of the following 

steps: the preparation and preprocessing of the dataset, the evaluation of the baseline model, the 

scaling of the features, the tuning of the hyperparameters with Hyperband, the construction of the 

stacking ensemble, the comparison of the ROC curve, and the interpretation of the SHAP-based 

model. An illustration of the entire research workflow may be found in Figure 2. 

2.1 Dataset and Preprocessing 

The dataset, sourced from the UCI Machine Learning Repository [17], contains 11.055 examples of 

phishing and non-phishing URLs, along with 30 statistical features such as the URL's length, the 

number of "@" or ".", the presence of HTTPS, the age of the domain, etc. The index column and the 

IP column were removed. Numeric features are filled with the average value, and categorical features 

are filled with the mode. The target is encoded in binary (1=phishing, 0=legitimate). 

2.1.1 Data Exploration 

This section provides a summary of descriptive statistics for all numerical parameters, including the 

mean, standard deviation, minimum, and maximum values, to elucidate the properties of the data. 

The class distribution between phishing and genuine categories is obtained using the 5-fold cross-

validation approach. Table 1 provides an overview of the dataset structure, showcasing five randomly 

selected rows alongside numerous critical attributes and the goal label. Additionally, Table 2 and 

Figure 1 present a summary of numerical statistics and class distribution, offering a first insight into 

the data patterns and class proportions within the dataset. 

Tabel 1. Five Examples of Random Rows, Covering Some Key Features and Target Labels. 

Sample having_IP_Address URL_Length SSLfinal_State age_of_domain 

1 -1 -1 0 -1 

2 1 -1 -1 1 

3 -1 1 1 -1 

4 1 -1 1 -1 

5 1 -1 1 1 

2.1.2 Summary of Class Statistics and Distribution 

To analyze the data's characteristics, Table 2 provides summary statistics, including the mean, 

standard deviation, minimum, and maximum values for five chosen numerical features. 
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Table 2. Summary Statistics of Some Numerical Features 

Fitur Mean Std Min Max 

having_IP_Address 0.3138 0.9495 -1.0 1.0 

URL_Length -0.6332 0.7661 -1.0 1.0 

SSLfinal_State 0.2509 0.9119 -1.0 1.0 

age_of_domain 0.0612 0.9982 -1.0 1.0 

Links_pointing_to_page 0.3440 0.5699 -1.0 1.0 

 

2.1.3 Class Distribution Visualization 

Table 2 provides a detailed overview of the data characteristics by presenting summary statistics, 

including the mean, standard deviation, minimum, and maximum values for five selected numerical 

features. 

 

Figure 1. Distribution of Target Classes on the Test Dataset 

2.2 Baseline Evaluation 

The data was split 80/20 (train/test)[19]. Four baseline models were trained on the original features: 

• Random Forest (100 estimator) 

• XGBoost (100 estimator, eval_metric='logloss') 

• LightGBM (default) 

• Stacking default (RF+XGB+LGBM meta‑learner LogisticRegression).  

Evaluation metric: Accuracy, Precision, Recall, F1‑score, AUC‑ROC 

2.3 Hyperband Tuning 

The initial features undergo scaling using StandardScaler[20].  Within every model: 

• Random Forest: hyperparameter space: n_estimators, max_depth, max_features, 

min_samples_split, min_samples_leaf. 

• XGB: n_estimators, max_depth, learning_rate, subsample, colsample_bytree. 

• LGBM: n_estimators, max_depth, learning_rate, num_leaves, subsample, colsample_bytree. 

• An investigation was conducted utilizing HalvingRandomSearchCV (factor=3, cv=5, 

n_iter≈30). The optimal performance of the model was evaluated using the test set. 

2.4 Equations 

The three optimized models are integrated via StackingClassifier with a Logistic Regression meta-

learner (cv=5).  The objective is to harness the synergy of the foundational models[21], [22]. 
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2.5 Evaluation and Analysis 

• Confusion Matrix for each variant. 

• ROC Curve comparing all models. 

• Cross-Validation Variability: 5-fold CV repeated for baseline XGB and tuned LGBM, 
reporting average and standard deviation of accuracy. 

• SHAP Summary Plot for the best LGBM, displaying the top 10 features based on average 
SHAP values. 

 

Figure 2. Reesearch Methodology 

3. Results and Discussion 

3.1 Baseline Model Evaluation 

The preliminary phase of this experiment involved assessing the baseline performance of four 

classification models: Random Forest (RF), XGBoost (XGB), LightGBM (LGBM), and the Stacking 

ensemble model. All models underwent evaluation utilizing raw features, without any scaling or 

tuning processes, to deliver an initial overview of the effectiveness of each algorithm on the dataset 

employed. The assessment was carried out utilizing five primary metrics: accuracy, precision, recall, 

F1-score, and AUC-ROC, to guarantee that the model's performance is not only elevated overall but 

also equitable in identifying both minority and majority classes. 

According to the baseline results presented in Table 3, all models demonstrate highly competitive 

performance, achieving accuracy levels exceeding 96%. The stacking model exhibits the most 

superior overall performance, achieving an accuracy of 96.88%, a recall of 98.17%, and an F1-score 

of 97.28%. In comparison, XGBoost follows closely with an accuracy of 96.83%, a precision of 

96.62%, and an F1-score of 97.23%. The Random Forest model demonstrated impressive 

performance, achieving a recall of 98.01%. However, its AUC-ROC is marginally lower than that of 

XGBoost and Stacking. LightGBM recorded the lowest performance among the four models, but the 

difference is relatively small, with an accuracy of 96.47% and an AUC-ROC of 96.28%. 
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Upon examining each metric, the stacking model demonstrates the most favorable equilibrium 

between sensitivity and precision. The elevated recall value demonstrates a strong capacity to 

identify nearly all occurrences of the positive class (phishing), whereas the consistent precision 

reflects a low rate of false positive predictions. The AUC-ROC value for stacking is 0.9668, matching 

that of XGBoost, which suggests that both models exhibit equivalent effectiveness in differentiating 

between phishing and legitimate classes. 

In summary, the baseline results demonstrate that while each model exhibits specific advantages (for 

instance, RF excels in recall, XGB in precision, and Stacking in metric balance), the Stacking model 

emerges as the most promising option at this preliminary stage prior to any tuning efforts. This 

establishes a solid basis for advancing performance enhancement via normalization and 

hyperparameter optimization. 

Table 3. Baseline Model Evaluation using Raw Features 

Model Accuracy Precision Recall F1-score AUC-ROC 

Random Forest (RF) 0.9665 0.9617 0.9801 0.9708 0.9644 

XGBoost (XGB) 0.9683 0.9662 0.9785 0.9723 0.9668 

LightGBM (LGBM) 0.9647 0.9616 0.9769 0.9692 0.9628 

Stacking 0.9688 0.9640 0.9817 0.9728 0.9668 

 

3.2 Feature Scaling and Model Tuning 

The feature scaling process is carried out to ensure that all numerical features are on a uniform scale 

before being used in the model training process, especially for scale-sensitive algorithms like 

XGBoost and LightGBM. Standardization using StandardScaler is a crucial step to prevent features 

with large values from dominating the model and to accelerate convergence during the training and 

tuning process. 

To improve classification performance, a hyperparameter tuning process was conducted using the 

HalvingRandomSearchCV approach, which is an efficient version of staged random search that 

reduces the number of candidates as cross-validation accuracy increases. This process is carried out 

independently for each model: Random Forest, XGBoost, and LightGBM. The tuning results in 

models with optimal parameter combinations, which are then used as base learners in the stacking 

model. 

After tuning, the performance of the three base models showed significant improvement. LightGBM 

recorded the most significant improvement, with accuracy rising from 96.47% to 97.24%, recall 

increasing from 97.69% to 98.65%, and F1-score from 96.92% to 97.60%. The XGBoost model also 

saw an improvement in F1-score from 97.23% to 96.84% and AUC-ROC from 0.9668 to 0.9620, 

although it slightly decreased marginally in some metrics. Meanwhile, Random Forest showed 

consistently high recall but a slight decrease in AUC-ROC from 0.9644 to 0.9579, likely due to 

overfitting with certain parameter combinations. The Tuned Stacking Model, which combines the 

three optimized models, recorded an accuracy of 96.97%, a precision of 96.92%, a recall of 97.77%, 

and an F1-score of 97.34%, generally outperforming all individual models and the baseline. 

3.3 Performance Comparison Across Phases 

A systematic comparison of model performance before and after tuning was performed to evaluate 

the impact of the optimization process on classification quality. The evaluation was conducted using 

five key metrics: accuracy, precision, recall, F1-score, and AUC-ROC. To support this analysis, the 

results are presented in the form of bar graphs depicting the performance of each model in two 

phases: baseline and after tuning using HalvingRandomSearchCV. 
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a. Accuracy Comparison 

The accuracy graph in Figure 3. shows that hyperparameter tuning has a positive impact on the 

LightGBM and Stacking models. LightGBM saw an accuracy increase from 96.47% to 97.24%, 

while the stacking model saw an increase from 96.88% to 96.97%. The XGBoost and Random Forest 

models tended to experience slight fluctuations. This graph shows that the tuning process can help 

certain models achieve greater stability in classification. 

 
Figure 3. Accuracy Comparison Across Models 

b. F1-score Comparison 

The F1-score metric in Figure 4. also showed a considerable improvement after tuning, with 

LightGBM recording a large rise from 96.92% to 97.60%. This indicates that the balance between 

precision and recall has been improved.  After adjustment, stacking was able to keep up its 

consistently excellent performance, achieving an F1 score of 97.34%.  By confirming that the tuning 

process helps maintain optimal performance in categorization scenarios that need both sensitivity 

and precision simultaneously, this improvement demonstrates that the tuning procedure is effective. 

 
Figure 4. F1-score Comparison Across Models 

c. Precision Comparison 

The F1-score metric in Figure 5. also showed a considerable improvement after tuning, with 

LightGBM recording a large rise from 96.92% to 97.60%. This suggests an improvement in the 

balance between precision and recall. After adjustment, stacking was able to keep up its consistently 

excellent performance, achieving an F1 score of 97.34%. By confirming that the tuning process helps 

maintain optimal performance in categorization scenarios that need both sensitivity and precision 

simultaneously, this improvement demonstrates that the tuning procedure is effective. 
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Figure 5. Precision Comparison Across Models 

d. Recall Comparison 

The recall values in Figure 6. show that the stacking and LightGBM models have the highest ability 

to detect positive classes. After tuning, the stacking recall was recorded at 97.77%, while LightGBM 

increased from 97.69% to 98.64%, the highest value among all models. This indicates that these 

models are very effective in minimizing type II errors (false negatives), which is crucial in 

applications such as phishing detection or security systems. 

 
Figure 6. Recall Comparison Across Models 

3.4 ROC Curve Analysis 

Figure 7 shows the ROC (Receiver Operating Characteristic) curve above, providing a visual 

comparison between all tested classification models, both at the baseline stage and after 

hyperparameter tuning using the Hyperband approach. This curve represents the relationship 

between the True Positive Rate (TPR) and False Positive Rate (FPR), which reflects the extent to 

which the model can correctly detect positive classes without producing too many misclassifications. 

The closer the curve is to the upper left corner of the graph, the better the model's performance in 

terms of high sensitivity and strong specificity. 

The Area Under the ROC Curve (AUC-ROC) values show that the LightGBM model tuned using 

Hyperband performed best with an AUC of 0.9702, followed by the Stacking Tuned model with an 

AUC of 0.9684. The Stacking Tuned model also demonstrated very balanced classification 

performance, with an accuracy of 96.97%, a precision of 96.92%, a recall of 97.77%, and an F1-

score of 97.34%. The result makes the ensemble model the most optimal candidate because it offers 

the best trade-off between a high positive detection rate and a low misclassification rate. Its curve, 

which is very close to the upper left edge of the ROC graph, indicates that the model is capable of 

maintaining very high detection performance even at minimal FPR levels. 
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Meanwhile, the XGBoost model at the baseline stage, despite having a fairly satisfactory AUC value 

(0.9668), exhibits visually weaker performance on the ROC graph. Its curve is not as sharp as the 

other models, especially in the early low FPR segments, indicating that the model struggles to 

accurately distinguish classes when small error rates are taken into account. The result indicates that 

despite high aggregate metrics like AUC, the probability distribution generated by the baseline 

XGBoost is less focused, causing the ROC curve to deviate from the ideal shape. 

 
Figure 7. ROC Curve Comparison all Models 

3.5 Model Explainability using SHAP 

Figure 8 shows the SHAP summary plot visualization showing the contribution of each feature to 

the prediction output of the best model, namely LightGBM (LGBM), optimized with Hyperband 

tuning. SHAP (Shapley Additive Explanations) is a game theory-based interpretability method that 

consistently and locally identifies the individual contribution of each feature to model predictions. 

The use of SHAP is important because it provides transparency over black-box models like ensemble 

methods (including LGBM) and helps identify the features that most influence model decisions 

quantitatively and visually. 

In the plot, the horizontal axis shows the SHAP value, which indicates the impact of a feature on the 

classification probability (positive or negative), while the color of the dot indicates the original value 

of the feature (blue = low, red = high). Each dot represents a single observation in the testing dataset. 

The features at the top of the graph are those that generally contribute the most to model predictions. 

These results show that the URL_of_Anchor, SSLfinal_State, Prefix_Suffix, and Links_in_tags 

features have the most significant contributions to the model's prediction output. For example, high 

values for the URL_of_Anchor feature (marked in red) tend to push the model's output in a positive 

direction (higher risk), while low values (blue) lead to negative predictions (higher risk). A similar 

pattern is also seen for the Abnormal_URL, Request_URL, and SFH features, which also have a 

substantial influence on classification. 

Thus, this SHAP analysis not only strengthens our understanding of how the model makes decisions 

but also opens up opportunities for model simplification, feature selection, and increased user 

confidence in the classification system particularly in the context of phishing detection. The 

identified key features can also form the basis for rule-based cyber defense systems or serve as a 

focus for future data collection. 
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Figure 8. Visualisation SHAP summary plot 

3.6 Confusion Matrix Analysis 

The results of the analysis on the classification models are shown through confusion matrices for 

various methods, including Random Forest (RF), Extreme Gradient Boosting (XGB), Light Gradient 

Boosting Machine (LGBM), and the stacking technique. For the baseline, the RF model showed 907 

true negatives and 1230 true positives, while XGB had 913 true negatives and 1228 true positives, 

and LGBM recorded 907 true negatives and 1226 true positives. The stacking method showed similar 

results with 910 true negatives and 1232 true positives. In the hyperband test, the RF model showed 

896 true negatives and 1228 true positives, while XGB got 907 true negatives and 1224 true positives, 

and LGBM recorded 912 true negatives with 1238 true positives. The stacking model in the 

hyperband showed 917 true negatives and 1227 true positives, indicating that, despite variations in 

performance, all methods provide quite good classification results. This analysis illustrates the 

strength of different algorithms in identifying target categories with relatively high effectiveness. 
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                 (a)                                         (b)                                        (c)                                        (d) 

     
                 (e)                                         (f)                                        (g)                                        (h) 

Figure 9. Confusion Matrix baseline and Hyperband all Model (a) Confussion matric RF Baseline, 

(b) Confussion matric XGB Baseline, (c) Confussion matric LGBM Baseline, (d) Confussion 

matric Stack Baseline,  (e) Confussion matric RF Hyperband, (f) Confussion matric XGB 

Hyperband (g) Confussion matric LGBM Hyperband (h) Confussion matric Stack Hyperband. 

3.7 Summary of Findings 

This experiment yielded several important findings that offer an in-depth assessment of the 

performance of various classification models, both at the initial (baseline) stage and after 

hyperparameter optimization using HalvingRandomSearchCV. The Stacking Ensemble model 

consistently performed best, both at the baseline and after tuning. In the baseline phase, stacking 

achieved an accuracy of 96.88%, a recall of 98.17%, and an F1-score of 97.28%, outperforming the 

other individual models. Performance improved after tuning, reaching 96.97% accuracy, 97.77% 

recall, 97.34% F1-score, and 96.84% AUC-ROC value. Although the increase is relatively small, it 

demonstrates the stability and reliability of the stacking model in maintaining classification quality. 

The individual models also responded positively to the tuning process. LightGBM recorded the most 

significant improvement, from 96.47% accuracy to 97.24%, and from 96.92% to 97.60% in the F1-

score, indicating that the model is highly responsive to parameter adjustments. In contrast, Random 

Forest and XGBoost experienced performance fluctuations, with Random Forest showing a slight 

decrease in accuracy and AUC while maintaining high recall. This suggests that tuning does not 

always guarantee improved performance once the model is already near-optimal. 

Overall, the tuning process proved to have a positive impact on model performance, particularly for 

LightGBM and the Stacking ensemble. The application of an ensembling approach that combines 

the strengths of each individual model yielded more balanced and stable classification results. The 

implications of these results are particularly important in real-world applications such as phishing 

detection or network security classification systems, where high recall and minimal misclassification 

are key priorities. With its ability to capture a significant proportion of incidents without significantly 

increasing the false positive rate, the Tuned Stacking model is reliable in error-critical classification 

systems. 

This research has a number of shortcomings, although it achieved a high level of accuracy and 

interpretability on benchmark datasets. In the first place, the model was trained and tested on static 

datasets (UCI and public repositories), which might not be an accurate representation of the ever-

changing nature of phishing techniques in real-world circumstances. Furthermore, the SHAP-based 

interpretability, although it is insightful, results in additional processing cost during post-analysis, 
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which may not be feasible in real-time detection systems. Due to the fact that its performance on 

different phishing datasets or multilingual URLs has not yet been investigated, the generalizability 

of the proposed model is also something that will require additional examination. These constraints 

could be addressed in subsequent work by verifying the approach on streaming data, testing it across 

various platforms, and including real-time model adaptation strategies. 

4. Conclusion 

This research successfully evaluated and compared the performance of several classification 

algorithms, namely Random Forest, XGBoost, LightGBM, and the Stacking ensemble model, both 

under baseline conditions and after hyperparameter tuning using HalvingRandomSearchCV. The 

evaluation results showed that the stacking ensemble approach consistently provided the best 

classification performance, with an accuracy of 96.97%, a recall of 97.77%, and an AUC-ROC of 

96.84% after tuning. This model not only excelled in global accuracy but also demonstrated an 

optimal balance between precision and sensitivity, making it a strong candidate for application in 

real-world applications requiring reliable classification, such as phishing detection systems.The 

feature scaling and tuning processes proved to have a positive impact, particularly on the LightGBM 

model, which demonstrated significant improvements in almost all evaluation metrics. Further 

analysis using SHAP (SHapley Additive exPlanations) demonstrated that model interpretability can 

also be strengthened by identifying the features most influential in predictive decisions. Thus, the 

model is not only precise but also understandable and transparently auditable.Although the results 

are very promising, there are several possible future development directions. First, the integration of 

data balancing methods such as SMOTE or ADASYN can be explored to address imbalanced class 

distributions, which are common in real-world datasets. Second, exploring deep learning-based 

model architectures, such as LSTM or Transformer for sequential data, can be an alternative for cases 

with temporal patterns. Third, implementing and testing the model in a production environment or 

real-time pipeline is necessary to practically verify the system's scalability and efficiency. Finally, a 

combination of other explainable AI techniques, such as LIME or counterfactual explanations, can 

enrich the model's understanding and increase end-user confidence in the developed system. 

 

References 

[1] P. Singh, T. Hasija, and K. R. Ramkumar, “Integrated Machine Learning Approach to Phishing 

Detection: Comparing SVM, Random Forest, and XGBoost Models,” in 2024 4th International 

Conference on Technological Advancements in Computational Sciences (ICTACS), IEEE, Nov. 2024, 

pp. 739–744. doi: 10.1109/ICTACS62700.2024.10840493. 

[2] N. F. Almujahid, M. A. Haq, and M. Alshehri, “Comparative evaluation of machine learning algorithms 

for phishing site detection,” PeerJ Comput Sci, vol. 10, p. e2131, Jun. 2024, doi: 10.7717/peerj-cs.2131. 

[3] N. Q. Do, A. Selamat, O. Krejcar, E. Herrera-Viedma, and H. Fujita, “Deep Learning for Phishing 

Detection: Taxonomy, Current Challenges and Future Directions,” IEEE Access, vol. 10, pp. 36429–

36463, 2022, doi: 10.1109/ACCESS.2022.3151903. 

[4] M. Almousa, T. Zhang, A. Sarrafzadeh, and M. Anwar, “Phishing website detection: How effective are 

deep <scp>learning‐based</scp> models and hyperparameter optimization?,” SECURITY AND 

PRIVACY, vol. 5, no. 6, Nov. 2022, doi: 10.1002/spy2.256. 

[5] K. Ileri, “Comparative analysis of CatBoost, LightGBM, XGBoost, RF, and DT methods optimised with 

PSO to estimate the number of k-barriers for intrusion detection in wireless sensor networks,” 

International Journal of Machine Learning and Cybernetics, May 2025, doi: 10.1007/s13042-025-

02654-5. 

[6] S. Demir and E. K. Sahin, “An investigation of feature selection methods for soil liquefaction prediction 

based on tree-based ensemble algorithms using AdaBoost, gradient boosting, and XGBoost,” Neural 

Comput Appl, vol. 35, no. 4, pp. 3173–3190, Feb. 2023, doi: 10.1007/s00521-022-07856-4. 

[7] T. Kavzoglu and A. Teke, “Predictive Performances of Ensemble Machine Learning Algorithms in 

Landslide Susceptibility Mapping Using Random Forest, Extreme Gradient Boosting (XGBoost) and 

Natural Gradient Boosting (NGBoost),” Arab J Sci Eng, vol. 47, no. 6, pp. 7367–7385, Jun. 2022, doi: 

10.1007/s13369-022-06560-8. 



Journal of Computer Science an Engineering (JCSE) 
Vol. 6, No. 2, August 2025, pp. 59-70 

e-ISSN 2721-0251 

 

70 
 

[8] I. D. Mienye and Y. Sun, “A Survey of Ensemble Learning: Concepts, Algorithms, Applications, and 

Prospects,” IEEE Access, vol. 10, pp. 99129–99149, 2022, doi: 10.1109/ACCESS.2022.3207287. 

[9] V. Selvaraj and I. Vairavasundaram, “A Bayesian optimized machine learning approach for accurate 

state of charge estimation of lithium ion batteries used for electric vehicle application,” J Energy Storage, 

vol. 86, p. 111321, May 2024, doi: 10.1016/j.est.2024.111321. 

[10] N. Subaşı, “Comprehensive Analysis of Grid and Randomized Search on Dataset Performance,” 

European Journal of Engineering and Applied Sciences, vol. 7, no. 2, pp. 77–83, Dec. 2024, doi: 

10.55581/ejeas.1581494. 

[11] B. K. Dedeturk and B. Akay, “A parallel hybrid approach integrating clonal selection with artificial bee 

colony for logistic regression in spam email detection,” Neural Comput Appl, Dec. 2024, doi: 

10.1007/s00521-024-10505-7. 

[12] J. Wilson, S. Chaudhury, and B. Lall, “Successive Halving Based Online Ensemble Selection for 

Concept-Drift Adaptation,” IEEE Transactions on Artificial Intelligence, pp. 1–15, 2025, doi: 

10.1109/TAI.2025.3578305. 

[13] F. Hutter, L. Kotthoff, and J. Vanschoren, Eds., Automated Machine Learning. Cham: Springer 

International Publishing, 2019. doi: 10.1007/978-3-030-05318-5. 

[14] Arunraju Chinnaraju, “Explainable AI (XAI) for trustworthy and transparent decision-making: A 

theoretical framework for AI interpretability,” World Journal of Advanced Engineering Technology and 

Sciences, vol. 14, no. 3, pp. 170–207, Mar. 2025, doi: 10.30574/wjaets.2025.14.3.0106. 

[15] J. R, “Transparency in AI Decision Making: A Survey of Explainable AI Methods and Applications,” 

Advances in Robotic Technology, vol. 2, no. 1, pp. 1–10, Jan. 2024, doi: 10.23880/art-16000110. 

[16] L. Merrick and A. Taly, “The Explanation Game: Explaining Machine Learning Models Using Shapley 

Values,” 2020, pp. 17–38. doi: 10.1007/978-3-030-57321-8_2. 

[17] Z. Li, “GeoShapley: A Game Theory Approach to Measuring Spatial Effects in Machine Learning 

Models,” Ann Am Assoc Geogr, vol. 114, no. 7, pp. 1365–1385, Aug. 2024, doi: 

10.1080/24694452.2024.2350982. 

[18] M. Li, H. Sun, Y. Huang, and H. Chen, “Shapley value: from cooperative game to explainable artificial 

intelligence,” Autonomous Intelligent Systems, vol. 4, no. 1, p. 2, Feb. 2024, doi: 10.1007/s43684-023-

00060-8. 

[19] F. Yahya et al., “Detection of Phising Websites using Machine Learning Approaches,” in 2021 

International Conference on Data Science and Its Applications (ICoDSA), IEEE, Oct. 2021, pp. 40–47. 

doi: 10.1109/ICoDSA53588.2021.9617482. 

[20] K. Barik, S. Misra, and R. Mohan, “Web-based phishing URL detection model using deep learning 

optimization techniques,” Int J Data Sci Anal, Feb. 2025, doi: 10.1007/s41060-025-00728-9. 

[21] K. Kanathey, VishwaGupta, and F. Imam, “An Enhanced and Optimized Stacking Ensemble Framework 

for Phishing URLs Detection,” in 2025 4th OPJU International Technology Conference (OTCON) on 

Smart Computing for Innovation and Advancement in Industry 5.0, IEEE, Apr. 2025, pp. 1–6. doi: 

10.1109/OTCON65728.2025.11070371. 

[22] M. Adnan, M. O. Imam, M. F. Javed, and I. Murtza, “Improving spam email classification accuracy 

using ensemble techniques: a stacking approach,” Int J Inf Secur, vol. 23, no. 1, pp. 505–517, Feb. 2024, 

doi: 10.1007/s10207-023-00756-1. 

  


