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Computer vision (CV) is a field of artificial intelligence (AI) that enables computers 

and systems to obtain data from images, recordings, and other visual information 

sources. Image recognition, a subcategory of computer vision, addresses a bunch 

of strategies for perceiving and taking apart pictures to engage the automation of 

a specific task. It is suitable for perceiving places, people, objects, and various types 

of parts inside an image and reaching deductions from them by analyzing them. 

With these kinds of utilities, it is a no-brainer that computer vision has its use cases 

in the military world. Computer vision can be immensely useful for intelligence, 

surveillance, and reconnaissance (ISR) work. This paper provides information on 

how computer vision might be used in ISR work. This paper utilizes artificial neural 

networks (ANN) such as convolutional neural networks (CNN) and residual neural 

networks (ResNet) for demonstration purposes. In the end, the ResNet model 

managed to edge out the CNN model with a final validation accuracy of 90.9% 

compared to a validation accuracy of 86% on the CNN model. With this, computer 

vision can help enhance the efficiency of human operators in image and video data-

related work. 
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1. Introduction 

Computer vision (CV) is a field of artificial intelligence (AI) that enables computers and systems to 

obtain data from images, recordings, and other visual information sources. If AI is interpreted as 

equipping computers to think, CV, on the other hand, can be interpreted as enabling computers to 

observe, see, and recognize. It is safe to say that the goal of CV is to create an autonomous system 

that can perform the endeavors of the human visual system or even surpass them. 

Image recognition, a subcategory of computer vision, addresses a bunch of strategies for perceiving 

and taking apart pictures to automate a specific task. It is suitable for perceiving places, people, 

objects, and various types of parts inside an image and reaching deductions from them by analyzing 

them. An example of image recognition is Google Lens. By using a device’s camera to capture 

images and send out relevant information about the object that it manages to identify.  

With these kinds of utilities, it is a no-brainer that computer vision has its use cases in the military 

world. Computer vision can be immensely useful for intelligence, surveillance, and reconnaissance 

(ISR) work. Computer vision can help enhance the efficiency of operators in image and video data-

related work. Thereby increasing their capacity to pursue other higher-value lines of work. Many 

militaries around the world are heavily investing in computer vision for intelligence work, such as 

detecting opposing countries' military hardware. These are the need for autonomous operation and 

the need to make greater use of the outputs from a diverse range of sophisticated sensors [1]. 

These are some instances of utilizing computer vision in a military setting. Computer vision can be 

used to recognize military vehicles based on the images that are posted on social media [2]. And 

other instances of computer vision used to recognize infantry fighting vehicles (IFV) and tanks [3] 

[4] [5]. Ground vehicles are not the main interest of this paper. This paper focuses on aircraft 

recognition in remote sensing images utilizing CNN and ResNet. Harnessing the power of artificial 
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neural networks (ANN) for image recognition stems from the intricate demands of identifying 

aircraft in satellite imagery. This study leverages the capabilities of convolutional neural networks 

(CNN) and residual neural networks (ResNet) to process data and derive precise classifications for 

diverse aircraft types captured in satellite images.Based on previous research by An Zhao et al. [6], 

aircraft type recognition is critical both in civilian and military use cases. It is said that if research is 

able to be implemented well enough, it will help alleviate the work of human operators. Qichang Wu 

et al. [7] also share the same sentiment. They added that aircraft recognition is not only necessary 

but also challenging. They stated that aircraft recognition is different from other natural object 

recognition because: (i) the number of aircraft types is limited; and (ii) each type of aircraft has a 

fixed size and shape. Maybe TNI AU (Indonesian Air Force) could invest in such technology if they 

haven't already. It could help with assessing hostile countries' battle forces so that they can come up 

with appropriate countermeasures to combat those forces. Since generally, computer vision can be 

developed quickly and at a low cost, it is a perfect fit for the military. Though, unlike for general use, 

obtaining datasets for military applications can be quite challenging since other countries don't want 

to share images of their military hardware; doing so could endanger national security. 

 

2. Method 

The Keras utility library was used in this study. This relates to scenarios involving the recognition of 

images using artificial neural networks (ANN). The study processes data using convolutional neural 

networks (CNN) and residual neural networks (ResNet) to classify different aircraft types using 

satellite photos. In order to generate a prediction of particular conditions based on the gathered 

dataset, the paper gives priority to image recognition—a novel approach that may prove useful for 

various use cases. The data collection phase involves acquiring the dataset through the internet. 

Ensuring the correct labels are affixed to the correct images is known as pre-processing data. Assign 

the appropriate label to the data if there are any anomalies. Pre-processing is necessary because 

numerous miss-labelings have been discovered throughout the dataset. The next step is to manually 

give them the right label for their retrospective after sorting. The data must then be divided into two 

folders. The folders for the train and test datasets. Data augmentations on the meticulously 

reorganized dataset are the next step. The specified ANN models, CNN and ResNet, are then used to 

implement the rearranged data. The accuracy levels are then evaluated through testing. Are the 

correct tags properly implemented or not. Then determine from the results of the two architectures 

which is more suited for this specific test. The design phases are provided by Figure 1, which 

visualizes the ResNet design process, and Figure 2, which visualizes the CNN design process. 
 

 
Figure 1. CNN Design Process 
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Figure 2. ResNet Design Process 

2.1 Dataset 

As an option to obtain training data from freely accessible sources, the "Muti-type Aircraft of Remote 

Sensing Images: MTARSI [8] dataset is used. The dataset contains 9,385 images of 20 different 

aircraft models. Though at first it seems that the dataset is organized, in fact it is not. There are 

multiple cases of false class labeling. the sample dataset shown in figures 3–13.  

Twin-prop engined light aircraft labelled as U-2 

 
Figure 3. “U-2” Samples 
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C-5 and C-17 got mixed up and vice versa, also Airliner labelled as C-5 

 
Figure 4. Samples for C-5, C-17, and Airliner 

Light Aircrafts labelled as A26 and P63 

 
Figure 5. “A26” and “P63” with Actual A26 and P63 

Source: Ragnhild and N. Crawford, Douglas A26 Invader. 2016.  G. Goebel, Bell P-63 Kingcobra, Chino, 

California. 2007. 
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B29 labelled as P3 

 
Figure 6. P3 Samples 

P3, B29, and E3 labelled as C-130 

 

Figure 7. C-130 and it’s “Samples” 

E2 labelled as E3 

 
Figure 8. E3 Samples 
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All aircraft that have fuselage mounted engines are labelled as “C-21” 

 
Figure 9. C21 Samples 

C-135 and Boeing 707 labelled as KC-10 

 
Figure 10. KC-10 Samples 

Sukhoi Flanker series(?) and F-15 labelled as F-16 

 
Figure 11. F-16 Samples 
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F-4, F-15, F-16, F-18, and F-35 being labelled as F-22 

 
Figure 12. F-22 Samples 

Aircrafts that does not need to be edited 

 
Figure 13. Samples of Aircrafts That Does Not Have False Labelling 

Figure 3 displays samples from the MTARSI dataset where twin-prop engined light aircraft are 

inaccurately labeled as "U-2." The mislabeling trend continues in Figure 4, where C-5 and C-17 

aircraft are mixed up, and an Airliner is erroneously labeled as C-5. Moving forward to Figure 5, 

light aircrafts are mistakenly labeled as A26 and P63, with a reference to the actual A26 and P63 

provided from sources by Ragnhild and N. Crawford, and G. Goebel, respectively. Figure 6 

showcases instances where B29 aircraft are incorrectly labeled as P3, while Figure 7 reveals 

confusion among P3, B29, and E3, all labeled as C-130. Figure 8 demonstrates the mislabeling of E2 

aircraft as E3. Intriguingly, Figure 9 highlights a curious pattern where all aircraft with fuselage-

mounted engines are uniformly labeled as "C-21." Figure 10 captures the mix-up between C-135 and 

Boeing 707, both mistakenly labeled as KC-10. Figure 11 sheds light on the misclassification of 
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Sukhoi Flanker series(?) and F-15 as F-16. Figure 12 further compounds the confusion, featuring F-

4, F-15, F-16, F-18, and F-35 aircraft all labeled as F-22. Concluding the series, Figure 13 provides 

relief with samples of aircraft that do not suffer from false labeling, offering a glimpse of the dataset's 

integrity amidst the intricacies uncovered in the preceding images. 

Following a meticulous process of manual reorganization, the dataset now encompasses a 

comprehensive collection of 22 distinct classes, resulting in a total of 9,146 images after pruning. 

This curated dataset captures a diverse array of aircraft, each belonging to one of the following 22 

classes: 

 

Figure 14. Dataset After Assigning Correct Labels 

The dataset consists of a total of 9,146 images, and it has been divided into two subsets for distinct 

purposes. A majority of the images, precisely 7,330, have been allocated for the training phase. This 

substantial subset is crucial for the model to learn and generalize patterns from the data. On the other 
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hand, the remaining 1,816 images have been set aside for testing. This separate testing subset is 

invaluable for evaluating the model's performance on unseen data, providing a reliable measure of 

its effectiveness and generalization capabilities. This division of the dataset into training and testing 

sets ensures a robust assessment of the model's proficiency in recognizing patterns and making 

predictions. 

2.2 Data Augmentation 

Data augmentation has been shown to produce promising ways to increase the accuracy of 
classification tasks[9][10]. Data augmentation is a key technique of machine learning. It consists in 
increasing the number of data, by artificially synthesizing new samples from existing ones.  In order 
to make the model more robust, prevent overfitting and enable it to generalize better data 
augmentation techniques were utilised[11].  The ImageDataGenerator in Keras is used to augment 
the datasets at hand, with the parameters of the augmentation provided in the table 1. 

Table 1. Data Augmentation with parameters 

No 
Data Augmentation 

Augments Parameters  

1 Re-Scale 1./255  

2 Shear 0.2  

3 Zoom 0.2  

4 Horizontal Flip True  

 

How the images looked like before and after augmentation, shown ini figure 15. 

 
Figure 15. Dataset Augmentation Parameters 

There is all to it for the preprocessing process of the datasets before we can feed it into the models. 

2.3  Convolutional Neural Network (CNN) 

Convolutional Neural Network (CNN) is a class of deep neural networks, most usually applied to 
investigate visual imagery[12] It found great success with researchers. As stated by Liu S and Liu 



Journal of Computer Science an Engineering (JCSE) 
Vol. 4, No. 2, August 2023, pp. 97-112 

e-ISSN 2721-0251 

 

106 
http://dx.doi.org/10.36596/jcse.v4i2.381 

Z[13] Normally, a CNN involves a pile of convolutional and pooling layers.  The convolutional layer 
can create feature maps by convolving the input feature maps or image with a set of learnable kernels. 
What's more the pooling layer can pool data of a given district on output feature maps in order to 
achieve down sampling and expansion of the receptive field. 

2.4 Residual Neural Network (ResNet) 

Residual Neural Network (RNN or ResNet) is a type of neural network that was introduced in 2015 

by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun in “Deep Residual Learning for Image 

Recognition”[14]. ResNet was presented later after CNN. Extra layers are added to a DNN to further 

improve accuracy and performance and are helpful in solving intricate problems. This problem of 

training very deep networks has been eased with the presentation of ResNet. Typical ResNet models 

are carried out with double- or triple- layer skips that contain nonlinearities (ReLU) and batch 

normalization in between[15]. 

3. Results and Discussion 

Table 1, presents the key parameters employed for both the Convolutional Neural Network (CNN) 

and ResNet models. These parameters are critical configurations that influence how the models are 

trained and evaluated. 

Table 2. Model Parameters 

No 
Model Parameters 

Parameters Value 

1 Batch Size 32 

2 Optimizer Adam 

3 Image Size 70 

4 Metric Accuracy 

5 Class Mode Categorical 

6 Epoch 50 

Moving on to the evaluation metrics of the end results for the CNN model and ResNet model. First, 

the CNN model. Provided below are the Training Accuracy v Validation Accuracy Chart, Training 

Loss v Validation Loss Chart, End Training Accuracy, End Training Loss, End Validation Accuracy, 

and End Validation Loss. 

 
Figure 16. CNN Accuracy Chart 

 

In this chart we can see that after 50 epochs how the model was behaving. The final CNN model we 

can see that there are some fluctuations in validation accuracy on a couple of epochs. One massive 

dip occurred on the 24th epoch, the accuracy gone down to as low as 59%. Compared to the relatively 

stable training accuracy. 
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Figure 17. CNN Loss Chart 

In this chart we can see that after 50 epochs how the model was behaving. The training loss is 

projecting a quite stable decrease of loss in 50 epochs with some up ticks here and there. The 

validation loss also performs quite well but it fluctuates more than the training loss. With a 

particularly huge spike on the 24th epoch. The loss value reached 1.4. In the end the CNN model 

achieves: 83.5% on Training Accuracy; 0.5069 on Training Loss 86% on Validation Accuracy; 

0.5542 on Validation Loss. This is quite a respectable result for such a simple model design. It is not 

optimal, but it is good enough for this showcase. 

Now, moving on to the ResNet model. Provided below are the Training Accuracy v Validation 

Accuracy Chart, Training Loss v Validation Loss Chart, End Training Accuracy, End Training Loss, 

End Validation Accuracy, and End Validation Loss. 

 

Figure 18. ResNet Accuracy Chart 

In this chart we can see that after 50 epochs how the model was behaving. The ResNet model is quite 

stable during this 50 epoch run. Most notably the training accuracy is high and it does so with tiny 

fluctuations. While the validation accuracy is also high, almost reaching the training accuracy 

numbers. While the validation accuracy is quite stable, there are a few dips in accuracy during this 

run. There is one massive spike on the 8th epoch, the accuracy is going down to only 54%. 
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Figure 19. ResNet Loss Chart 

In this chart we can see that after 50 epochs how the model was behaving. The ResNet model is quite 

stable during this 50 epoch run. Most notably the training loss is low and it does so with tiny 

fluctuations. While the validation accuracy is acceptable and quite stable, there is one massive spike 

in validation loss on the 8th epoch with the loss value reaching 1.8. In the end the ResNet model 

achieves: 98.4% on Training Accuracy; 0.156 on Training Loss 90.9% on Validation Accuracy; 

0.733 on Validation Loss. The ResNet model managed to outdone the CNN model by quite a margin. 

Since the ResNet model managed to outdone the CNN model, the categorical distribution shown is 

only the ResNet categorical distribution. 

 
Figure 20. Categorical Distribution 1 
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In figure 20, we can  see that the model mistook Business Jet as T43. This missclassing only happened 

on a small enough scale. What is interesting is that the model mistook C-5, C-135, and B-52 as C-

17. It is an expected missclassing because the aircrafts that are mentioned share some similar features. 

They all are huge aircrafts with four wing mounted engines (8 engines for the B-52 but 2 engines are 

mounted together per pylon) they all share somewhat similar figures. Granted, the C-5 does share 

more resemblances with the C-17 if we look at it from the top. So when the model mistook C-5 as 

C-17 it was not that surprising. But worryingly the mistaken identity happens too frequently for 

comfort. This skews the overall accuracy of the model.  

 
Figure 21. Categorical Distribution 2 

 

The model predicts Light Aircraft as P-3 in some cases. Both of those aircrafts look different from 

each other. Maybe the model mistook both aircraft’s airframes for each other.  The model also 

mistook Airliners as E-3s. The model may have become unable to recognise the shape of the radar 

on the E3. If we discount that fact, the E3 and Airliners do share a few resemblances although so 

slightly. Moving on to the F-35s, the model mistook F-16s as F-35s. Again, the model might confuse 

the aircraft’s airframe with each other. Now we have an interesting case of mistaken identity. The 

model confuses F-16s with KC-10, B-1, and C-130. All four of these aircrafts couldn't be more 

different from each other. One is a small single engined fighter, one is a huge tanker/cargo aircraft, 

one is a sleek bomber, and the other is a four engined propeler cargo aircraft. This is a surprising 

result to say the least. Next up we have F-16s mistaken as F-22s. Same as with the F-35s, the model 

might confuse the aircraft’s airframe with each other. 
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Figure 22. Categorical Distribution 3 

As discussed earlier, the confusion between C-5 and C-17 classifications can be somewhat expected 

due to the shared resemblances, particularly when viewed from the top. Their outlines bear a certain 

similarity, and while the C-5 appears to have a longer fuselage than the C-17, both exhibit the 

characteristic of four engines mounted on the wings, as discerned from the images. Thus, the model's 

occasional misclassification of C-5 as C-17, given these visual cues, is somewhat understandable. 

However, venturing into a more intricate aspect, we encounter the perplexing case of the C-135 as 

illuminated in Figure 22. The C-135 stands out for its remarkable confusion with a diverse array of 

aircraft, including Business Jet, C-130, C-17, C-5, F-15, F-16, Light Aircraft, and P-3. The model's 

capacity to mistake the C-135 for such a variety of aircraft is indeed remarkable and introduces a 

unique challenge. While the comparison with C-5, C-17, and C-130s can be rationalized, considering 

their shared characteristics as sizable planes with four engines on their wings, the model's tendency 

to misclassify F-15s, F-16s, Light Aircrafts, P-3s, and Business Jets takes the complexity of 

classification to an entirely different level. 

Figure 22 becomes a visual narrative, highlighting the intricacies and challenges faced by the model 

in distinguishing between diverse aircraft types within the MTARSI dataset. The misclassifications 

observed underscore the need for further refinement and training to enhance the model's accuracy 

and robustness in handling a broad spectrum of aircraft categories. 
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Figure 23. Categorical Distribution 4 

The model confused the C-130 with a couple of aircraft. It is confused with Business Jet, C-135, and 

KC-10. The model confuses Business Jets with C-130 when they do not share any similarities at all. 

We can say that for C-135 and KC-10 as well. The only thing that the C-130s share with them is their 

huge size. It is quite interesting that the model confuses the C-130 with those three aircraft. If it were 

mistaken for P-3s, then it is more expected. Lastly, the model confuses the C-17 with the B-52. 

Granted, they both are huge planes with four engines jutting out of their wings if we are looking from 

the top side, this confusion is warranted. 

4. Conclusion 

Based on the results achieved above, it can be concluded that, in this specific use case with all the 

parameters mentioned above, ResNet is the more accurate and reliable model compared to CNN. The 

models above were evaluated using the MTARSI dataset. The dataset cleanliness was questionable 

at best. We work around this by manually inspecting and relabelling all the mislabelling instances. 

After that to ensure that our model would not be plagued with overfitting, we augment the dataset 

using ImageDataGenerator from keras. In the end, the ResNet model managed to edge out the CNN 

model with a final validation accuracy of 90.9% compared to a validation accuracy of 86% on the 

CNN model.  
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