
Available online at http://icsejournal.com/index.php/JCSE
Journal of Computer Science and Engineering (JCSE)

e-ISSN 2721-0251
 Vol. 3, No. 2, August 2022, pp. 71-94

71
http://dx.doi.org/10.36596/jcse.v3i2.548

Big Data Indexing: Taxonomy, Performance Evaluation,

Challenges and Research Opportunities

Abubakar Usman Othman1, Timothy Moses2*, Umar Yahaya Aisha3, Abdulsalam Ya’u Gital4,

Boukari Souley5, Badmos Tajudeen Adeleke 6

1,4,5Abubakar Tafawa Balewa University, University Hostel Rd, 740102, Yelwa, Nigeria
2Federal University of Lafia, PMB 146, Maraba Akunza, Obi Road, Lafia, Nasarawa State, Nigeria.
3Gombe State University, P.M.B 127, Tudun Wada, 760253, Gombe, Nigeria
6Industry and Innovation Institute, Sheffield Hallam University, United Kingdom
1othman80s@yahoo.com*; 2moses.timothy@science.fulafia.edu.ng; 3aishatuyu@gmail.com; 4asgital@gmail.com
5bsouley2001@yahoo.com; 6agbeketajudeen@gmail.com
* corresponding author

A R T I C L E I N F O

ABSTRACT

Article History:

Received July 2, 2022

Revised September 5, 2022

Accepted September 6, 2022

In order to efficiently retrieve information from highly huge and complicated

datasets with dispersed storage in cloud computing, indexing methods are

continually used on big data. Big data has grown quickly due to the

accessibility of internet connection, mobile devices like smartphones and

tablets, body-sensor devices, and cloud applications. Big data indexing has a

variety of problems as a result of the expansion of big data, which is seen in

the healthcare industry, manufacturing, sciences, commerce, social networks,

and agriculture. Due to their high storage and processing requirements,

current indexing approaches fall short of meeting the needs of large data in

cloud computing. To fulfil the indexing requirements for large data, an

effective index strategy is necessary. This paper presents the state-of-the-art

indexing techniques for big data currently being proposed, identifies the

problems these techniques and big data are currently facing, and outlines some

future directions for research on big data indexing in cloud computing. It also

compares the performance taxonomy of these techniques based on mean
average precision and precision-recall rate.

Keywords:

Indexing

Similarity search

Matching

Big data
Cloud Computing

Correspondence:

E-mail:

moses.timothy@science.fulafia.edu.ng

1. Introduction

A web-based program called cloud computing offers a shared pool of resources. Mobile devices,

like smartphones and tablets, may now be used for a wide range of various purposes thanks to

advancements in mobile technology [1]. The accessibility of the internet, through the use of widely

available broadband Internet access [2], in combination with these portable (mobile) devices, led to

the simple collection of digital information in terms of structured and unstructured data [3], which

in turn had contributed to the availability of large volumes of data known as big data.

The massive volume of data created each day has outgrown data processing systems like databases

and warehouses. Modern technologies are desperately required to handle this varied volume of data

properly. Big data analysis in the cloud requires effective technology or methodologies. Big data

indexing in cloud computing aims to provide effective information retrieval from enormous

datasets as well as to enhance capacity and capability at runtime without investing in new

equipment, purchasing new licenses for software, or hiring new personnel. Through the internet,

cloud computing enables consumers to access cloud services on-the-fly and pay as they go [4].

Hardware as a Service (HaaS), Software as a Service (SaaS), Platform as a Service (PaaS),

Communication as a Service (CaaS), Infrastructure as a Service (IaaS), Data storage as a Service

(DaaS), Security as a Service (SecaaS), and Business as a Service (BaaS) are among these services.

Data storage as a Service is utilized for the indexing of huge data on the cloud.

Science research has been significantly altered and affected by big data. Astronomers now utilize

the Sloan digital sky survey as a collection of tools and data base [5]. The majority of an

mailto:3aishatuyu@gmail.com
mailto:agbeketajudeen@gmail.com

Journal of Computer Science an Engineering (JCSE)
Vol. 3, No. 2, August 2022, pp. 71-94

e-ISSN 2721-0251

72
http://dx.doi.org/10.36596/jcse.v3i2.548

astronomer's work in the field of astronomy used to be taking images of the sky, but now that those

photos have been catalogued in a database, other astronomers may utilize the objects from the

catalogued photos. Data from company purchasing transactions is effectively kept on the cloud.

Databases are built so that other biologists and scientists may use the generated biological and

scientific data, and biological data and experimental data are saved in a public storage facility.

Today, it is highly challenging to gain access to a very big database where information on a

patient's diagnosed ailment may be utilized to track the development of his health. These data

might be utilized to develop effective and efficient healthcare practices, starting with diagnosis,

prescription, patient monitoring, suggestion, referral, and emergency cases. The growing paradigm

of mobile devices that enable cloud-based continuous patient monitoring in their homes through the

use of information technology is a satisfying approach to significantly reduce costs. In order for the

information retrieved to be utilised by the analysis method, the generated unstructured data must be

structuralized [6].

Similar to how it has an impact on decision-making, big data has an impact on urban planning

(through the fusion of high fidelity geographic data), intelligent transportation systems (through

analysis visualisation of live and detailed road network system data), environmental modeling

(through ubiquitous sensor networks collecting data), energy conservation (through revealing

patterns of use), and smart materials (through new material genome initiatives) [5]. Big data

processing became incredibly challenging, making a highly result-oriented method ideal to

maximize the speed of data query processing. For this, effective access to huge data in the cloud

requires optimized indexing strategies. Big data is a term used to describe a graph dataset that is

many terabytes in size and cannot be handled by DBMSs. Such several graph mining algorithms

have been proposed [7].

Researchers have, however, suggested several indexing methods with a focus on huge data in cloud

computing. Similarity searches; Approximate Nearest Neighbor (ANN) indexing approaches have

been an area of interest for study and tree-based algorithms [8-11] have recently been used for

indexing in order to efficiently retrieve huge data on the cloud. [12] suggested R-tree-based

indexing as a way to index multi-dimensional data on the cloud. An indexing technique called

distributed B-tree allows for high concurrency reading operations while also enabling consistent

and concurrent updating [13-14]. In a biometric system, databases are recognized so that a more

effective indexing strategy can increase throughput by reducing the search space for query images.

The majority of the time, nearest neighbor classifiers are used for form matching and image

recognition [15]. KD-tree [16] is a multi-dimensional indexing system that was presented for

finding the best matches with less time spent. Trajectory indexing systems have been intensively

researched for extracting knowledge from trajectory data [17–18], creating efficient indexing

structures [19–20], managing uncertainty, and processing trajectory queries [21–22]. Hash-based

indexing techniques are renowned for their efficiency in search and similarity computation as well

as their effectiveness in application areas like large-scale vision problems, such as image retrieval

[23–24], image search [25], object recognition [26], local descriptor compressing [27], fast

multimedia search [28], and image matching [29]. While the 𝑐2 [31] is utilized for preserving index

items in d-dimensional data, [30] applied approximate similarity search. Many more hashing-based

indexing approaches [32–50] were presented for effective big data management, storage needs, and

retrieval.

Large data analysis should be quicker and cheaper [51], with effective indexing strategies allowing

for faster indexing of big data findings while yet tolerating high costs. Obtaining a structured

indexing of the original video material and being familiar with its embedded semantics similarly to

humans were the goals of content-based image indexing and retrieval, video indexing, and audio

indexing [52].

This paper serves as a menu for choosing indexing approaches, offering scholars a way to

comprehend and gain insight into the various indexing techniques and the issues they raise. Big

data requirements in terms of volume, velocity, truthfulness, value, variability, diversity, and

Journal of Computer Science an Engineering (JCSE)
Vol. 3, No. 2, August 2022, pp. 71-94

e-ISSN 2721-0251

73
http://dx.doi.org/10.36596/jcse.v3i2.548

complexity must be met through an effective indexing strategy. However, these research sought to

solve the following problems and provide the following contributions to knowledge.

 Emphasize the cutting-edge methods currently being utilized for indexing huge data.

 Identifies related issues with the suggested indexing methods for huge data.

 Propose solutions to address the shortcomings (inefficiency) of the current big data

indexing approaches.

 Identify the difficulties and needs for big data indexing.

 To describe potential prospects for research into indexing methods for massive data in

cloud computing.

 Use Mean Average Precision to gauge how well indexing approaches operate.

2. Big data indexing requirements and challenges

For effective indexing of huge data in cloud computing, many indexing strategies are created.

Different criteria are used to assess how well the established indexing techniques work. The most

prevalent and fundamental metrics are the indexing technique's speed and accuracy. An indexing

technique's velocity requirements are its speed, while its veracity requirements are its accuracy.

Volume, variety, value, variability, and complexity are additional needs. Big data requirements for

privacy and usability provide a significant problem, but they are outside the purview of this

research and will be investigated in other publications. These huge data issues are necessary for

evaluating and contrasting indexing techniques. The following obstacles and needs are listed:

 Volume: is a term that is frequently used to describe size in numerous contexts. The

magnitude of large data is a difficulty for effective big data indexing and management.

Currently, depending on the application area where big data is employed, data are

continually growing from terabytes to zettabytes of dataset. Big data volume increase

mostly in the field of research as new discoveries were discovered. Big data cannot be

measured. Huge amounts of data, or "big data," have also been tremendously influenced by

the accessibility of the internet and portable electronics.

 Velocity: Handling the rate at which new data are generated and current data are updated is

a problem [53]. Due to the widespread use of sensing and mobile devices, enormous

amounts of data are continuously and often created, and the outdated data may be easily

updated thanks to the accessibility of internet services, broadband, and portable devices

like smartphones. The storage system responds to the data when new data is created by

indexing and storing the updated and newly generated data in the cloud. Data must be

indexed at an extremely fast rate. The richness of data, which has greatly risen and is

utilized for communication via social networks, as well as its speed both have a significant

impact on the telecommunications business. Big data velocity, then, is the pace of data

collection and the time it takes to process the data after it has been gathered.

 Veracity: The hallmark of big data veracity is the correctness of the data. It may be quite

challenging to determine which data is damaged and which is not, as well as if the created

data came from a trustworthy source and can be believed. A very important component of

any big data demand is big data truth.

 Value: The importance of data in terms of decision-making is referred to as big data value.

Big data should have an impact on potential advantages, business transactions, insight, and

communication values.

 Variety: Data are gathered in a variety of forms and models from many sources, including

databases. The information may come from emails, sensors, mobile devices, social

networking sites like Facebook and Twitter, web pages, blogs, images, and videos,

business transactions, RFID readings, and papers from the healthcare and/or aviation

industries. The difficulty is in organizing the many forms of data into a dataset and

correlating their meanings. Structured, semi-structured, and unstructured data are the many

data kinds. Big data variety may be defined as the semantic interpretation, heterogeneity of

data kind, and heterogeneity of data format.

 Variability: The rise in mobile device accessibility and affordability, along with the quick

rise in broadband accessibility and affordability, have significantly increased the use of

Journal of Computer Science an Engineering (JCSE)
Vol. 3, No. 2, August 2022, pp. 71-94

e-ISSN 2721-0251

74
http://dx.doi.org/10.36596/jcse.v3i2.548

sensor devices, including body-warn sensors, sensor networks, social networks, and

information retrieval for e-commerce. As these technologies are used more often, network

congestion arises, slowing down data downloads and uploads and disrupting the flow of

large data.

 Complexity: A feature linked to the complexity of big data is the degree of

interconnectedness, interdependencies, and very large datasets [54].

3. State-of-the-art indexing techniques

The literature on various indexing algorithms is briefly reviewed in this part, with an emphasis on

large data in cloud computing. The primary application of the currently available approaches is to

index large amounts of data in the cloud.

Data-independent indexing strategies, commonly referred to as randomised hashing methods, are

categorized as hashing-based indexing schemes [30], [40], [42] and [55–56]. The projections used

by this class of hashing-based indexing methods are generated at random, and the hash function is

created using data distribution via data-dependent binary code embedding techniques [57].

By minimizing the Hamming distance between two binary codes in the original feature space as the

code length rises, supervised hash coding using deep neural networks [58] was suggested to

enhance retrieval accuracy. This leads to the generation of lengthy codes to reach sufficient

performance. By minimizing the reconstructive error between the cosine similarity calculated by

the original features and the resultant binary embedding, [59] introduced a unique angular

reconstructive embedding (ARE) that learns binary hash codes.

Finding two-dimensional objects represented by discrete points that have undergone an affine

translation is possible through the use of geometric hashing [60]. A point-based indexing method

called geometric hashing is utilized to index a biometric database. Geometric hashing uses the base

pairs of the Speeded-Up Robust Features (SURF) key points as the indexing components. Using

Scale Invariant Feature Transform (SIFT) to identify key points and a geometric base indexing

approach to transfer the identified key points into a hash table, [61] suggested a robust iris indexing

strategy to index iris datasets (Geometric hashing). Two steps comprise geometric hashing; the

stages of pre-processing and recognition. A hash table is produced during the pre-processing stage.

Features are taken from pictures or objects and stored in the hash table as key points in a database.

The Difference of Gaussian (DOG) function, as defined in equations (1) and (2), was employed by

the authors to identify prospective interest points [62].

𝐷(𝑥, 𝑦, 𝜎) = 𝐿(𝑥, 𝑦, 𝑘𝜎) − 𝐿(𝑥, 𝑦, 𝜎) (1)

𝐿(𝑥, 𝑦, 𝜎) = 𝐺(𝑥, 𝑦, 𝜎) ∗ 𝐼(𝑥, 𝑦) (2)

Where k is the constant multiplicative factor used to change the scale and x,y are the coordinates of

a pixel in image I, and 𝐿(𝑥, 𝑦, 𝜎) is determined from equation (2) where 𝐺(𝑥, 𝑦, 𝜎)is the Gaussian

filter for smoothing the image, and 𝜎 is defined as the width of the filter. A gradient orientation

histogram is used to locate the key points once each key site is given an orientation. Equations (3)

and (4) below calculate the magnitude and direction as follows:

𝑚(𝑥, 𝑦) = √ (𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦))2 + (𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦1))2 (3)

θ(x, y) = tan−1 (
(L(x+1,y)−L(x,y−1))

(L(x+1,y)−L(x−1,y))
) (4)

𝑃 = 𝑢𝑝𝑥
𝑖 + 𝑣𝑝𝑦

𝑖 + 𝑝𝑜
𝑖 (5)

In equation (5) above, 𝑃 = [𝑥, 𝑦] is the set of key points to be indexed, and (𝑢, 𝑣) is the position of

point p (the key point) following similarity transformation. 𝑚(𝑥, 𝑦) and θ(x, y) are the magnitude

and orientation, respectively [63].

Journal of Computer Science an Engineering (JCSE)
Vol. 3, No. 2, August 2022, pp. 71-94

e-ISSN 2721-0251

75
http://dx.doi.org/10.36596/jcse.v3i2.548

Due to the many insertions of image features that have been extracted into the hash table to

accommodate every potential rotation and translation, this technique is inefficient because, it leads

to high computational and memory costs.

Regarding guiding principles and significant operators capable of mapping linked data with search

keys, B-tree indexing-based approaches are connected to an audit of multi-dimensional large data.

One of the characteristics of big data is their ability to manage data in massive volumes of various

sizes. [64] suggests an effective indexing system for temporal data ranking queries. Top-k searches

on temporal data are answered in this study in almost linear time, with projected low I/O costs. The

SEB-Tree was created by the authors using the B-tree. They produced a set of l+1 independent

samples of the set S, where S is the set of segments shown in equation (6).

𝑙 = [√log (
𝑁

𝐵
) + log (

𝑘𝑚𝑎𝑥

𝐵
)] (6)

N is the database's number, B is the block size, and k is the query parameter [65-66].

Despite being effective, the approach cannot handle live data streams since their behaviors are

unknown.

In order to enable data owners to freely put data into a database at any moment, integrity auditing

of outsourced data was recommended [67]. For query authentication, the authors employed a

probabilistic technique, which is simpler and more flexible to implement. The authors just add a

few tuples to the external database. The tuples are then authenticated using equation (7) to

determine if they are genuine or fraudulent.

𝑎ℎ = { ℎ(𝑡𝑖𝑑 ⨁ 𝑎1…⨁𝑎𝑛)
ℎ(𝑡𝑖𝑑 ⨁ 𝑎1…⨁𝑎𝑛)+1

 𝑡 𝑖𝑠 𝑟𝑒𝑎𝑙
𝑡 𝑖𝑠 𝑓𝑎𝑘𝑒

 (7)

where ti is the tth tuple, h is the hashing algorithm, and a is the header column

Because the way these records are formed has a significant influence on the storage performance of

the scheme, both the randomized and the deterministic ways for creating the inserted tuple are

explored. Absolute accuracy for query authentication is not guaranteed by the technique, which is

an issue [64].

[68] suggested an effective indexing method for a face database. The new indexing method was

created by the authors of this work using hashing. The hash table and descriptor vector for model

recognition were created using the coordinates of the control points. Control points are the

elements that give an image its distinctive qualities. Utilizing Speeded-Up Robust Characteristics

(SURF), control point features are retrieved. To make the control points invariant to translation,

rotation, and scaling, a pre-processing method is utilized. This method comprises mean centering,

principal component rotation, and normalization. After that, mean centering is used to reduce the

impact of noise. The mean of all the translated control points is zero once each control point has

been translated. Utilizing the direction of the control points that stayed constant even when some of

the points are not accessible, the rotation of the control points-based primary components is

accomplished. Using the Principal Components Analysis (PCA), this is accomplished. By

performing a dot product of a point vector with the principal component vector, which gives the

projection of the point on the principal component, coordinates are rotated with respect to their

mean such that the first and second principal components are aligned along the x- and y-axis of the

coordinate system.

The updated geometric hashing is scale-invariant thanks to normalization. To obtain the normalized

coordinate values for each control point, the standard deviation of coordinate values is employed as

follows:

ℎ𝑥 =
1

𝜎𝑥
𝑞𝑥 (8)

Journal of Computer Science an Engineering (JCSE)
Vol. 3, No. 2, August 2022, pp. 71-94

e-ISSN 2721-0251

76
http://dx.doi.org/10.36596/jcse.v3i2.548

ℎ𝑦 =
1

𝜎𝑦
𝑞𝑦 (9)

Where 𝜎𝑥 and 𝜎𝑦are the standard deviation, ℎ𝑥 and ℎ𝑦 are the normalized coordinate values, 𝑞𝑥

and 𝑞𝑦 are the coordinate values. Each control point takes up a distinct bin in the hash table as a

result of scaling factors multiplied by the normalized coordinate values of the control points.

Voting is then utilized to discover the top k best matches against the query from the models kept.

The resulting table is searched against control points of a query for recognition so that dissimilar

control points to the query's control points are removed [68].

When compared to previous strategies, experimental findings for the suggested technique reveal

that both the computational cost and utilization of memory space have been significantly decreased.

The approach is redundant in that each normalized point of the altered query model has to be

validated to confirm that specific point exists in the hash table, even though memory and

computational costs are both decreased.

[69] suggests an indexing method for a biometric database made up of several attributes with a

configurable number of dimensions. The research makes advantage of the geometric aspects of the

features' principle components such that, after rotating the first two highest principal components to

the fundamental axis of the coordinate system, it may insert fewer features into the hash table.

Their approach, a two-stage triplet-based indexing strategy, is based on the triangle that triplets of

features make. The triangle's angles serve as the features. These features are taken from database

models using Speeded-Up Robust Features (SURF), which allows for quick calculation and the

production of lower dimensional features. Prior to taking a rectangle window of these found key

points, salient points are first determined by employing a Hessian matrix to find key points.

The indexing and searching are phases of the triplet-based indexing approach. Following the

extraction of features by SURF, the indexing step performs principal component analysis

transformation, triplet construction, and hash table building. To make each model in the database

invariant to translation, rotation, and scaling, principal component is employed. The retrieved

features are likewise translated from their original positions when the model image is translated.

Then, using mean centering, each characteristic of every model image in the database is translated

to a different image such that the mean of the translated image is zero.

Mean centering may be calculated by:

𝑓 =
1

𝑚
 = ∑ 𝑓𝑖𝑚

𝑖=1 , 𝑓𝑟𝑜𝑚 𝑓𝑖 (10)

𝑆𝑖 = ∑ (𝑓𝑖
1 − 𝑓̅)(𝑓𝑖

1 − 𝑓̅)𝑇𝑚
𝑖=1 (11)

From the list above, m stands for the model's features, 𝑓 for its mean value of the features of model

M, and 𝑆𝑖 for its scatter matrix.

Following transformation, the major components are then found and calculated using the

eigenvalues as in equation (4). The major axes of the coordinate system are formed by rotating the

principal components. Each feature takes up a distinct bin in the hash table once the normalized

features are multiplied by a scaling factor. A hash table's position is assigned to each triangle in a

model image. The coordinates are provided in equation (12).

𝑝𝑖 = (∝𝑚𝑖𝑛, (∝𝑚𝑎𝑥,−∝𝐴) (12)

Where ∝ is the angle of a triangle produced by triplet feature points and 𝑝𝑖 is the 𝑝𝑡ℎ position of

the features in the hash table.

As in equation (13), the triangle is added to the hash table one at a time.

𝐻(𝑝𝑖) = 𝐻(𝑝𝑖) 𝑈 (𝑀𝑖𝑑, �̅�) (13)

Journal of Computer Science an Engineering (JCSE)
Vol. 3, No. 2, August 2022, pp. 71-94

e-ISSN 2721-0251

77
http://dx.doi.org/10.36596/jcse.v3i2.548

Where 𝑀𝑖𝑑,and �̅� are the model identity and descriptor vector connected to the triangle's greatest

angle, respectively.

The triangles in the model image that do not resemble the triangles in the query are filtered out

during the searching phase. In order to access the correct bin, features are retrieved from an image,

triangles are generated between triplets with the new coordinate, and these angles are then mapped

into the hash. Only triangles whose distance is under a threshold are chosen. The Euclidean

distance between the feature descriptor of a query triangle and all the triangles found in the bin is

calculated. The remaining query's triangle is subjected to this procedure, and the results are then

compiled into the candidate set. The candidate set's occurrences of the model identity are then

voted on to determine the top matches.

The triplets are well distributed, as practically every bin occupies an equal amount of triplets,

according to experimental results of the suggested approach when compared with the existing

techniques in terms of index distribution, which results in quicker indexing and reaction time.

Although the plan is effective in terms of speed, it is unable to take data from many sources.

For effective retrieval of skewed geographical data, [70] developed a unique key design based on

R+-trees. On this study; indexing spatial data management in the cloud, the authors developed a

new indexing method (KR+-index) based on R+-trees that supports effective multi-attribute

accesses for skewed data on cloud data management systems (CDMS). By dynamically dividing

and merging nodes, the R+-tree creates a balancing search tree and may limit the quantity of items

in each node by adjusting the M and m. Key names are created for R+-tree leaves. To split the data,

the R+-tree is employed, and the rectangles in the tree's leaf nodes are used as grids.

The objects record for each rectangle, let's say R1, R2, and R3, is kept, and the data required in the

scheme are created by the R+-tree with specified M, m. A new data point is added into a node by

first looping up the key of the point that corresponds to the model to which the point belongs. To

determine if a split would be necessary, the node's current size is checked. The node is divided into

two new sub-nodes and the old node is removed when the number of points reached the appropriate

limit. The original node's points will be distributed among the new sub-nodes. The method

considers cloud data management to effectively extract skewed and spatia data.

The method is effective for accessing data and offers support for both range and nearest-neighbor

(NN) searches, but it lacks a mechanism for quick responses to queries regardless of the size of the

query and the data being accessed. The parameters of the technique are the order O, the bottom and

upper boundaries of the rectangle (M, m). The experimental finding demonstrates that, for skewed

data, the new indexing approach, KR+-index, beats the most recent index method, MD-HBase. The

system requires a significant amount of memory and lacks secrecy. Because computing requires a

lot of processing time, the cost is significant.

[46] suggested a method for keeping track of K-nearest neighbor requests over moving objects.

Grid indices are used by the authors to create algorithms for both object’s indexing and querying.

Additionally, a cost model was created. Continuous monitoring of several K-nearest neighbor (k-

NN) queries over moving objects was the major emphasis. In order to achieve high throughput, a

two dimensional region of interest is taken into account in this study. Each item in this research has

a unique identification 𝑝(𝑡) ∈ 𝑃(𝑡), and exists in the unit square [0, 1]2. The plane is divided into

regular grid cells of equal size, and the coordinates of the objects 𝑝(𝑡) are indicated as
〈𝑝(𝑡)𝑥, 𝑝(𝑡)𝑦 〉. After that, the items are scanned. To make it possible to create their index, the

scanned items are mapped into the correct cells. (𝑝(𝑡 ;) ∈ 𝑃(𝑡 ;) is used to keep the object's growing

list for each cell at time t. Equation (14) illustrates how to build mobility and indexing, and

equation (15) shows how to calculate the incremental query response time when mobility and cell

size are present.

Pr = {
1 − (

𝜎

2𝑣𝑚𝑎𝑥
)

2
 𝑖𝑓 𝜎 ≤ 𝑣𝑚𝑎𝑥

𝑣𝑚𝑎𝑥

𝜎
 (1 −

𝑣𝑚𝑎𝑥

4𝜎
) 𝑖𝑓 𝜎 > 𝑣𝑚𝑎𝑥

 (14)

Journal of Computer Science an Engineering (JCSE)
Vol. 3, No. 2, August 2022, pp. 71-94

e-ISSN 2721-0251

78
http://dx.doi.org/10.36596/jcse.v3i2.548

𝑡𝑞𝑢𝑒𝑟𝑦 = (𝑏0 + 𝑏1𝜇√𝑁𝑝𝑏2𝜇2𝑁𝑃) . 𝑁𝑄 , (15)

𝑇 = (𝐶1
(𝑙𝑐𝑟𝑖𝑡+ 𝛿)2

𝛿2 + 𝐶2 (𝑙𝑐𝑟𝑖𝑡 + 𝛿)2𝑁𝑃) 𝑁𝑄. (16)

Where 𝑣𝑚𝑎𝑥 denotes the maximum mobility, (𝑙𝑐𝑟𝑖𝑡)denotes the neighbors' distances from the

bounding rectangles (width and height), 𝑁𝑃 denotes the length of the array, 𝑡𝑞𝑢𝑒𝑟𝑦 denotes the

query time, 𝜎 denotes the size of the cell, 𝑁𝑄 denotes the number of queries, 𝑁𝑝 denotes the

number of objects, 𝑇 denotes the overall time, and 𝜇 denotes the deviation.

Equation (16) above demonstrates how query indexing may be utilized to respond to requests by

obtaining a bootstrap from k-NNs queries. The scheme is effective in terms of scalability, memory

usage, and speed, but it does not support time parameterised queries due to their focus on

continuous queries for monitoring rather than a general spatial-temporal indexing method.

Experimental results show that index construction requires a linear time and query answering time

is nearly constant.

[47] suggest an innovative method for indexing moving objects. The suggested main-memory

approach uses frequent snapshots to move items into the index, which supports time-parameterized

(predictive) searches and is simultaneously space-, query-, update-, and multi-CPU efficient.

Fundamentally, MOVIES is similar to the method used by a cinematographer: since no camera can

record continually changing data in a single frame, a cinematographer must take a sequence of

static images at a specific frame rate. An illusion of continuous movement may be produced as

long as the frame rate is higher than the inertia of the human eye (i.e., at least 24 frames per

second). We take the exact same course of action. By taking into account a dataset of, let's say, N

moving objects in a 2-dimensional region of interest, the authors were able to create a short-lived

index picture that is only stored in the main memory for a brief amount of time. The domain of the

scheme is |X|*|Y|, where |X| stands for the number of different places in the horizontal (or vertical)

dimensions. For all incoming queries, the algorithm relies on read-only indexes and index frames.

Data and query results are predicted using a timestamp-consistent predictive index and timestamp-

consistent query processing. The system is effective, according to experimental results, but it is less

effective at dealing with more widespread issues with indexing data streams. Scalability and

staleness must be balanced. When processing a huge number of data and changes, the approach is

ineffective.

[48] suggests the use of a composite tree index method for the run-time correlation engine to

facilitate efficient event indexing and searching. The ability of compact tree data structures is used

by the authors so that they may share a single set of event indices for all of the leaf nodes on the B-

tree. Additionally, they make advantage of the search index data structure to effectively process

timestamp-based searches. Events are promptly stored to the file storage utilizing a container

paradigm as they enter the system. A list of keywords is created from the message's extracted

content. To index each extracted keyword, a node is created or returned by the tree structure. If an

event is received using the RTCE event data format, the engine creates an event object, and the

data for the index, which corresponds to the event index. Additionally, the tree structure acts as a

lexicon for storing each term included in stream events, after which a reference is made. The root

node, the transition node, and the leaf node make up the tree structure of the scheme. The query

engine scans the list of requested keywords to execute a query. This approach uses a composite

tree-based indexing strategy that is effective in terms of quick response times. The Java Garbage

Collector (JGC) must repeatedly stop in order to free up the heap for the incoming events, which

results in a reduction in performance, according to experimental data. As a result, the indexing

performance is not justifiable.

[49] created an epic system as an integrated framework to accommodate high concurrent OLTP

queries and huge scale data analysis activities. Different types of indexes were created and

incorporated into the system to enable effective query processing for a range of applications. Run-

Journal of Computer Science an Engineering (JCSE)
Vol. 3, No. 2, August 2022, pp. 71-94

e-ISSN 2721-0251

79
http://dx.doi.org/10.36596/jcse.v3i2.548

time Content Accessible Network (CAN) has incorporated an R-tree based indexing technique with

a CAN-based routing protocol (RT-CAN). The multi-dimensional data and query processing in a

cloud system is called RT-CAN. To accomplish efficient indexing, an integrated CAN-based

routing protocol and an R-tree-based indexing system were utilized. To retain index items in d-

dimensional data, the author utilizes d-dimensional C2. An R-tree node is inserted into a CAN node

using a mapping function. Then, R-tree nodes were indexed for use in indexing operations, and at

the same time, the indexes for each subsequent R-tree node were published. In the epic system, a

CAN node that has the key receives a query, processes it, searches its buffered global index, and

returns the user-retrievable result. Equation (17) and (18) calculates the cost model and the

anticipated processing time for KNN queries.

𝐷𝑥 ≈
2 √𝑟(

𝑑

2
+1)

𝑥

√𝜋
 (1 − √1 − √

𝑘

𝑁

𝑑
) (17)

𝐶(𝑆) = ∑ (𝑐𝐹𝑃(𝑛, 𝑄) + 𝐶𝑀(𝑛, 𝐿))𝑛 ∈𝑆 (18)

Where d is the dimensionality of RT-CAN, K are the data items, S are the nodes of tree, N are the

estimated numbers of data in the whole space, Γ(x+1) = xΓ(x), Γ(1) = 1 and Γ(
1

2
) =

𝜋

2
, and 𝑐𝐹𝑃 are

the false positive and maintenance costs, respectively, and n stands for the node.

The epiC system lacks scalability in terms of increased dimensionality [75], despite being effective

at managing huge users and massive amounts of data [76-78]. The overlapping of d-dimensional

space and range queries with a large number of index items, which results in a high communication

cost, are the main causes of throughput declines as dimensionality increases.

[23] provided a quick image search for metrics that were learnt. They discovered a Mahalanobis

distance function that effectively encapsulates the underlying connection of the image. The authors

encode the learnt metric parameterization into randomised locality-sensitivity hash functions as in

equations (19, 20, 21, 22) to enable sub-linear time similarity search under the taught metrics.

𝑑𝐴(𝑥𝑖, 𝑥𝑗) = (𝑥𝑖 − 𝑥𝑗)𝑇𝐴(𝑥𝑖 − 𝑥𝑗), (19)

𝐴𝑡+1 = 𝐴𝑡 + 𝛽𝑡𝐴𝑡(𝑥𝑖𝑡 − 𝑥𝑗𝑡)(𝑥𝑖𝑡 − 𝑥𝑗𝑡)𝑇 𝐴𝑡, (20)

𝐾𝑡+1 = 𝐾𝑡 + 𝛽𝑡𝐾𝑡(𝑒𝑖𝑡 − 𝑒𝑗𝑡)(𝑒𝑖𝑡 − 𝑒𝑗𝑡)𝑇 𝐾𝑡, (21)

𝑃𝑟[ℎ(𝑥) = ℎ(𝑦)] = 𝑠𝑖𝑚(𝑥, 𝑦), (22)

Where t is an iteration, 𝛽𝑡 is a projection parameter, 𝑒𝑖𝑡 and 𝑒𝑖𝑗 are vectors to the it − th and jt −

th standard basis vectors, respectively, and 𝑑𝐴 is the distance between the matrix 𝑥𝑖 and 𝑥𝑗.

Equation (22)'s probability of collision and similarity function is denoted by 𝑃𝑟, 𝑠𝑖𝑚(𝑥, 𝑦). The

system is unreliable and uses an excessive amount of memory and processing time.

[34] provided many indexing methods, including content-based image indexing, content-based

multimedia indexing, audio indexing, and video indexing. These methods are together referred to

as content-based indexing methodology. The indexing strategy aims to identify the targets speakers

in movie dialogs and extract semantically significant movie events. The authors employed a

searchable index of the speech material present in digital audio files created using an online audio

indexing system. The system looks for the borders of acoustically homogenous segments as data is

received and categorizes it into speech, music, and mixing classes. The speech fragments are

grouped together to offer consistent speaker identification. The speech and mixing portions were

transformed into text format using the ASR technique. After that, the output of the words is time-

stamped in XML along with other immediate data. The writers only discuss the various indexing

methods and concentrate on the usage of online audio indexing systems. The system cannot handle

complexity, diversity, or truth.

Journal of Computer Science an Engineering (JCSE)
Vol. 3, No. 2, August 2022, pp. 71-94

e-ISSN 2721-0251

80
http://dx.doi.org/10.36596/jcse.v3i2.548

[50] By using a dynamic threshold to enhance cluster identification of latent semantic indexing,

[50] suggest a method that is based on Latent Semantic Indexing (LSI) as part of the strategy. Input

selection, pre-processing and indexing, latent semantic indexing, calculating similarity and

grouping, and visualization are all included. The input is indexed using the individual words once

the input variables have been specified and pre-processed. The latent semantic index is then used to

process the pre-processed and index-generated matrix. The approach's text is represented as a term-

by-context matrix, or M, which is then broken down using the singular value decomposition

method. The heuristic in [72] is utilized to determine the number of dimensions as a result of the

size of the document used in equation (23).

ℎ𝑒𝑢 = (𝑚 𝑥 𝑛)0.2 (23)

Where m and n, respectively, stand for the number of contexts and terms. The linked context is

clustered using the similarity metric. The distance function is used in R, a programming language

designed for data analysis and visualization, to construct these clustered linked contexts. The

authors employed dynamic hybrid cut [79], which is renowned for considering the dendrogram's

form and building the clusters from the bottom up. According to experimental findings, the

dynamic hybrid cutting method significantly increases the ability of LSI to identify issues in source

code. Because the dynamic hybrid cutting approach is so good at cutting asymmetric dendrograms,

the findings beat the fixed height threshold cutting technique [73-74]. The scheme's flaw is that it

only uses one expert per case study, allowing for the use of a priori information that can be

exploited to affect performance outcomes.

[51] designed the IG system for graph queries, which is a quick graph query processing with a

cheap index. The method allows for quick indexing and effective query processing. The authors

built their index using a quick approach for extracting network commonalities based on basic graph

statistics. All of the database's data graphs were combined into a single graph and closely adhered

to the frequency of the edges in order to achieve high throughput. The integrated graphs (IG) are a

small representation of a collection of graphs that have a number of desirable properties and are so

inexpensive to build that subgraph isomorphism testing is not necessary. They are also simple to

maintain in terms of update database. Query processing in this study comprises query integration,

direct incorporation of replies, and project-database filtering. The query response time is as given

in equation (24) below:

𝑇𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = (𝑇𝑠𝑒𝑎𝑟𝑐ℎ + ∑ (|𝐶𝑞|𝑞 ∈𝑄 ∗ 𝑇𝐼
𝑂⁄ + |𝐶𝑞| ∗ 𝑇𝑣𝑒𝑟𝑖𝑓𝑦) (24)

Where 𝑇𝑣𝑒𝑟𝑖𝑓𝑦 is the time needed to verify the candidates, 𝑇𝐼
𝑂⁄ is the disk input and output for

obtaining each candidate graph, and 𝑇𝑠𝑒𝑎𝑟𝑐ℎis the index search time. According to experimental

findings, index creation is quicker, uses less memory, and processes queries more efficiently than

the state-of-the-art indexes utilized in this study.

To address the tolerant retrieval problem in the shortest possible query time, [81] introduced the

compressed permuterm index. The construction of the string, computing 𝐿 = 𝑏𝑤𝑡(𝑆𝐷), and

creating the compressed data structure to facilitate RANK queries over the string L are the three

processes that make up the compressed permanent index. The 𝑗𝑢𝑚𝑝2𝑒𝑛𝑑 function, created by the

authors, may change backward processes and handle PREFIXSUFIX queries. To discover the rows

that are prefixed, the search method BackPerm_search scans characters backward. When the

BackPerm_search (𝛼$𝛽) function is used, the number of dictionary strings is returned as 𝑙𝑎𝑠𝑡 −
𝑓𝑖𝑟𝑠𝑡 + 1. Applying 𝐷𝑖𝑠𝑝𝑙𝑎𝑦_𝑠𝑡𝑟𝑖𝑛𝑔 will return these strings. The BackPerm_search

($𝑃$)function does the same thing, returning the value of First if First < last, otherwise concluding

P ∄ D. Select activates the Display string (i) provided that 1 ≤ 𝑖 ≤ 𝑚. According to experimental

findings, the plan is effective at addressing issues with tolerant retrieval.

Journal of Computer Science an Engineering (JCSE)
Vol. 3, No. 2, August 2022, pp. 71-94

e-ISSN 2721-0251

81
http://dx.doi.org/10.36596/jcse.v3i2.548

4. Datasets used in indexing

It is extremely challenging to execute real-time indexing of this complicated information or data, or

big data, in cloud computing because of the complex nature of data flowing from many sources as a

result of the availability of mobile devices and broad band internet. Volume, velocity, and variety

are the elements that make up data. Value [53] and veracity [54] are factors that deal with the

utility of data for decision-making, and the degree of data trustworthiness must also be met. The

indexing system must be effective in indexing big data and meet requirements for volume, velocity,

variety, veracity, variability, value, and complexity. Simulations are performed to verify the

effectiveness of the indexing scheme with regard to search accuracy. The simulations don't take

place in real time. For non-artificial intelligence (NAI) indexing approaches, the grounds for testing

indexing accuracy included charts, images, geographic data, and text. Using a multimedia dataset,

the artificial intelligence- and collaborative artificial intelligence-based indexing strategies are

assessed. The effectiveness of indexing techniques based on artificial intelligence is also tested

using text-based and annotated datasets. Researchers tested the viability and efficacy of the existing

indexing techniques using various datasets. Data identification is facilitated by the platforms used

for the datasets. For instance, the platform where the graph data will be used can help identify a

graph dataset. [55] put a lot of effort into developing various indexing techniques on the iGraph

graph dataset structure. Therefore, the implementation platform will aid users in understanding the

type of data available in the dataset. Although there are other ways to gather data, it is not

discussed in this section. In [56], datasets from the US Forest Service website, Flickr, and the

Wikipedia database, respectively, were utilized.

Additionally, two multimedia datasets that were gathered and made publicly accessible from

prominent Wikipedia articles are incorporated in [57]. The NUS-WIDE database was used to

acquire the second dataset, which is the Flickr data. 2866 image-text pairings from Wikipedia were

retrieved in order to assess the efficacy of their technique. Of these, 2173 served as the training set,

while 697 served as the test dataset. 186577 image-text pairings total, of which 185577 are utilized

as training data and the remaining 1000 pairs as test datasets, are present in the NUS-WIDE

database.

5. Categorization Methodology

For the purposes of this review, indexing methods suggested by reliable researchers that were made

available from highly regarded publishing journals as evidenced by their impact factor were

employed. The Journal Citation Report (JCR) determines the rankings. In this study, the

effectiveness of an indexing strategy was evaluated in terms of its ability to address big data

requirements in cloud computing while also enhancing high recall rates. Additionally, this will help

highly esteemed researchers of the highest caliber assess potential offered solutions in order to

create effective indexing strategies that meet the needs of big data for big data indexing in cloud

computing environments. In light of the performance advantage, the relevance of the methodology

utilized in developing an efficient indexing system is examined. Big data factors are used to

validate the performance of proposed indexing systems and compare them to other current

schemes. One of the most crucial big data factors is volume, which is one of the characteristics that

define big data. The 6Vs and C, also referred to as velocity, variety, veracity, value, variability, and

complexity, are additional considerations. Some indexing methods just meet the volume

requirement for data while others also meet the velocity requirement, which refers to the rate or

pace at which new data are generated or current data are transformed.

The ability of bit-scalable deep hashing codes to maintain discriminating powers with short codes

is well established. [58] suggests using a deep convolutional neural network to build a supervised

learning framework for producing bit-scalable and compact hash codes from raw photos. The use

of compact and bit-scalable hashing algorithms in combination with neural networks, according to

the scientists, produces outstanding results in similarity searches for picture and person re-

identification in surveillance. Additionally, the created codes preserve the ability to discriminate

when employing short-length codes. It outperforms previous approaches like DSRH with a

Journal of Computer Science an Engineering (JCSE)
Vol. 3, No. 2, August 2022, pp. 71-94

e-ISSN 2721-0251

82
http://dx.doi.org/10.36596/jcse.v3i2.548

significantly increase of 1.67% because of the integrated representation of features and hash

algorithms.

Table 1 is an overview of research journals reviewed in this work, along with an explanation of

their features and the drawbacks of the current indexing techniques. The table provides a list of the

various indexing methods that were utilized to categorize the data in this study. It has six vertical

columns that list the author's name, the work's title, the technique utilized, a description of the

method, the connected problem and its current solution, and the suggested solution. The table also

includes features as optimising search time.

Table 1. State-of-the-art techniques

Author
Title of the

work

Method

used

Description of the method

used

Problem associated

with the method used

Proposed solution

[23]

Fast image

search for

learned

metrics

Hashing

The image’s underlying

relationship are captured. The

learned metric

parameterisation are encoded

into randomised locality-

sensitivity hash function.

There is high

computational cost and

not suitable for veracity.

Data retrieval is very

slow. There is high

memory consumption.

Deign an algorithm

that would be

suitable for veracity.

Use of geometric

hashing of SURF

key points to

improve the speed of

recognition.

[32]

Supervise

hashing

with kernels

Hashing

Minimal amount of supervise

information is used for high

quality hashing. Supervised

information are similar and

dissimilar data pairs. The

authors utilised the

equivalence between

optimising the code inner

products and the hamming

distances.

It cannot handle large

spectrum of information

such as duplicate

document detection.

Design an algorithm

that can minimise

the minimum

information criterion

and the hamming

distance.

[34]

Spherical

hashing:

Binary code

embedding

with

hypersphere

s

Spherical

hashing.

Hypersphere-based hashing

function is use to map more

spatial coherent data points

into a binary hash code with a

new binary code distance

function the spherical

Hamming distance suitable to

the hypersphere-based coding

scheme.

The binary code embedding

function 𝐻(𝑥) maps data in

𝑅𝐷 points into the binary hash

code.

SHD does not provides

significant improvement

in terms of accuracy

with the generalised

spherical hashing.

There should be a

similarity

embedding term

incorporated into the

independent hashing

functions to improve

accuracy.

[35]

Compact

hashing

with joint

optimization

of search

accuracy

and time

Compact

hashing

The search time is analyse and

model to ease the

minimisation of the search

time. The search time is

minimised by balancing the

hash bucket.

The scheme cannot

handle large scale data

set. The use of one hash

table degrade

performance in terms of

recall.

Employ the use of

hypersphere to

reduce

computational

complexity by

defining tighter

closed regions

among the data

points.

[47]

Compact

structure

hashing via

sparse and

similarity

preserving

embedding.

Special

structure-

based

hashing

(SSBH)

The sparse reconstructive

relationship of data to learn

compact hash codes. The

information provided by each

bit is utilised to obtain desired

properties of hash codes. The

information theoretic

The computational

complexity involve in

the objective function,

the map matrix, sparse

weight matrix degrade

performance.

The hash functions

should be design

using the

discriminative

similarity

information among

the data points to

Journal of Computer Science an Engineering (JCSE)
Vol. 3, No. 2, August 2022, pp. 71-94

e-ISSN 2721-0251

83
http://dx.doi.org/10.36596/jcse.v3i2.548

Author
Title of the

work

Method

used

Description of the method

used

Problem associated

with the method used

Proposed solution

constraint is incorporated into

the relaxed empirical fitness as

a regularising term to obtain

the objective function

reduce

computational cost.

[49]

Asymmetric

cyclical

hashing for

large scale

image

retrieval.

Asymmetr

ic cyclical

hashing.

Two hash codes of different

length are used for stored

images in the database and the

queries. The compact hash

code is used for the stored

images in the database to

reduce storage cost while the

long hash code is used for the

queries for searching

accuracy. To retrieve images

from the database, the

Hamming distance of the long

hash code is computed for the

query and the cyclical

concatenation of the compact

hash code of the stored images

for better precision-recall rate.

There is long response

time and additional

computational cost for

calculating the

Hamming distance of

the compact hash code

of the stored image and

long hash code of the

query. There is large

storage cost due to the

use of long codes.

The hash function

designed should be

based on the

distribution of data

for effective short

compact hash codes.

[52]

Different

Indexing

Techniques

Content-

Based

Indexing

Semantically meaningful

movie events are extracted

from movies. An online audio

indexing system is used to

create a searchable index

speech content contained in

digital audio files. Boundaries

of the acoustically segment of

data are searched and the data

is then classified as speech,

music or a mixture.

The focus was on online

audio indexing system.

The system is not

suitable for veracity,

variety and complexity.

Manifold learning

[61]

Robust iris

indexing

scheme

using

geometric

hashing of

SIFT key

points.

Geometric

Hashing

(point

based

Local descriptors and relative

spatial configuration are used

for identity matching. SIFT is

used to extract local features

from noise independent

annular iris image to detect

key points. Geometry hashing

is then applied to the detected

key points for indexing in the

database. In the retrieval

phase, geometric hash location

of query image is used to

access the exact bin of the

table and a vote is cast and

images with certain number of

votes are considered. Key

point descriptors of possible

candidates is matched with the

query iris to get the potential

match.

The method is

redundant in that the

features are mapped

into the hash table

multiple times. The

feature points are not

normalised. There is

high memory

consumption and

computational cost.

Use SURF

extraction technique

to extract feature

points from images.

The feature points

should be pre-

processed and

normalised. DOG

should be used to

detect interest

points. Data number

should be reduced in

the hash bins to

improve the

performance of

recognition.

We employ a

technique to evenly

distribute features

into hash table

(DSH).

[64]

Top-k

queries on

temporal

data

B –tree

B-tree is used as a building

block to design a SEB-tree to

support temporal ranking

queries. SEB-tree answer a

top-k query for any time

instance t in the optimal

number of I/Os in expectation.

The scheme is

impractical when

dealing with unknown

behaviour of online data

stream and it is also

faced with high

computational cost. It

Graph partitioning

and B+-tree (hybrid

B-tree).

Journal of Computer Science an Engineering (JCSE)
Vol. 3, No. 2, August 2022, pp. 71-94

e-ISSN 2721-0251

84
http://dx.doi.org/10.36596/jcse.v3i2.548

Author
Title of the

work

Method

used

Description of the method

used

Problem associated

with the method used

Proposed solution

Piecewise linear functions are

break into segments and uses

the upper envelop U(S) which

is made of the portion of the

segment visible from +∞

along y-axis. A series of 𝑙 + 1

independent samples are

created and the query

algorithm is designed.

suffer from the curse of

dimensionality and

cannot deal with large-

scale data base because

of the memory

constraint.

[65]

Indexing in

network

trajectory

flows.

Graph

partitionin

g and B+-

tree

The T-PARINET is composed

of network model, query

model, and the data model.

The network model defined

for the T-PARINET uses

representation from the road

network based on the

geometric view and topology

view. The geometric view

captures approximate

geographic location of the

road network while they

topology view uses the graph

in order to represent the road

sections and intersections.

Consumes vast

computing resources

when carrying out

online data stream

indexing. It cannot

handle large-scale data

base.

Fuzzy

[66]

MOVIES:

Indexing

moving

objects by

shooting

index

images.

Fuzzy

Short-lived index images are

constructed and kept in the

main memory for a very short

time. The predictive and non-

predictive MOVIES

algorithms are designed to

support time parameterised

predictive queries. The

MOVIES indexing algorithm

which is based on index

frames uses frE-quent

Snapshots to index moving

objects.

The scheme could not

handle general

problems of indexing

data streams. There is

trade-off between

scalability and

staleness. The scheme is

inefficient in handling

large volume of data

and updates.

Cache aware B+-tree

as read-optimised

structures.

[67]

Integrity

auditing of

outsourced

data

Query

Authentic

ation.

Small records are inserted into

the outsourced data.

Randomised and deterministic

approaches for generating the

inserted records are both

studied. To effectively audit

the integrity of the system, the

inserted records in the query

result are analysed.

There is no guarantee

that query

authentication is

correct.

Authenticated tree-

based structures.

[68]

An efficient

indexing

scheme for

face

database

using

modified

geometric

hashing.

Modified

Geometric

Hashing

It uses the modified geometric

hashing. SURF operators are

used to extract control points

from the face database. A pre-

processing method mean

centering, principal

component, normalisation and

rotation are used to make the

control points invariant to

translation, rotation and

scaling.

Redundancy. The

scheme does not

support indexing of a

database that is dynamic

(increase and decrease

in size) to enable

modification. Variant

are not uniformly

distributed into the hash

space. High memory

cost.

Employ dynamic

geometric hashing

technique to support

insertion, deletion of

feature points, data

points, data and

updating the bin

table. Use prime

hash function to

maximise the

distance of keys with

collision and also to

ensure uniform

distribution of

variant into the hash

space (bin).

Journal of Computer Science an Engineering (JCSE)
Vol. 3, No. 2, August 2022, pp. 71-94

e-ISSN 2721-0251

85
http://dx.doi.org/10.36596/jcse.v3i2.548

Author
Title of the

work

Method

used

Description of the method

used

Problem associated

with the method used

Proposed solution

[69]

Use of

geometric

features of

principal

components

for indexing

a biometric

database.

Triplet-

based

hashing

Geometric features of

principal components are used

to insert fewer features into

the hash table. SURF is used

to extract features from the

database by using Hessian

matrix to detect key points. .

The scheme is not

suitable for variety and

does not support

modification of the

database. There is high

search time and

memory cost.

We use compact

hash codes to reduce

memory cost. Use

dynamic geometric

hashing technique to

support modification

of data. There

should be minimal

number of data

points in the hash

table to improve the

speed of recognition.

The number of

feature points for

each image in hash

bins should be equal.

[70]

Indexing

spatial data

in cloud

data

managemen

t

R+-tree

A key names for leaves on an

R-tree are designed. R-tree is

used to divide the data and the

rectangle in the leave nodes

are treated as dynamic grids.

Data points are inserted into

the node. Range query is used

to get the geographic

coordinates of the overlapped

grids.

There is high

consumption of space

and high response time

for large dataset. The

search performance

drops with data of high

dimensionality.

There should be an

efficient scheme

suitable for velocity

and volume

[71]

Monitoring

k-NNs

queries over

moving

objects.

Fuzzy

Grid indices are used for

algorithm formulation to index

objects and queries. Objects

are scanned and mapped into

corresponding cells and their

respective index are then

constructed.

It does not support time

parameterised queries

due to their focus on

continuous queries for

monitoring in contrast

to a general spatial-

temporal indexing

method. Frequent

creation of index image

consumes time.

Use frE-quent

Snapshots to support

item parameterised

(predictive) queries.

[72]

High

volumes of

event stream

indexing

and efficient

multi-

keyword

searching

for cloud

monitoring.

Composit

e tree (B-

tree)

The solution is built based on

the composite index data

structure which shares a single

list of event indices for all the

leave nodes on the B-tree.

Search index data structure is

used to efficiently process

timestamp-base queries.

There is high

consumption of

computing resources

because of many

operation involved. The

scheme suffers from the

curse of data

dimensionality.

Hybrid indexing

classifier that

considers dynamic

graph partitioning.

Graph partitioning

and B+-tree (hybrid

B-tree).

[81]

The

compressed

permuterm

index

Permuter

m index

Compute (First’, Last’) =

BackPerm search(𝛾$𝛽)

• Compute [First’’, Last’’] =

BackPerm search(𝛽)

• For each r ∈ [First’, Last’]

repeatedly apply Back step

until it finds a row which

either belongs to [First’’,

Last’’] or to [1,m] (i.e. starts

with $).

High memory

consumption.

Cross-indexing of

binary SIFT codes.

[82]

Indexing

multi-

dimensional

data in a

R –tree

and

content

accessibili

Indexes are designed and

integrated. The R-tree based

indexing scheme and the

content accessibility network

An increase in

dimensionality result to

decreases in throughput

due largely to

Compact R-tree to

utilised storage

Journal of Computer Science an Engineering (JCSE)
Vol. 3, No. 2, August 2022, pp. 71-94

e-ISSN 2721-0251

86
http://dx.doi.org/10.36596/jcse.v3i2.548

Author
Title of the

work

Method

used

Description of the method

used

Problem associated

with the method used

Proposed solution

cloud

system

ty network

(CAN)

based routing protocol are

then integrated as RT-CAN.

R-tree node are then inserted

to a CAN node. The R-tree

nodes are then indexed. A

query is directed to a CAN

node that contains the key for

query processing.

overlapping of d-

dimensional space and

range query with large

number of index items

which leads to high

communication cost.

6. Taxonomy of indexing techniques

This study's indexing methods are grouped and/or classified to provide a clear understanding. This

is known as taxonomy. Non-artificial intelligent (NAI), artificial intelligent (AI), and Collaborative

Artificial Intelligent (CAI) are the three categories on which the taxonomy of indexing approaches

is built. These indexing systems are further divided into components for categorization. Non-

artificial intelligence, for instance, is further broken down into components like hashing, graphs,

and bitmaps. Machine learning (ML), soft computing (SC), as well as Knowledge Representation

and Reasoning (KRR), are divisions of artificial intelligence. The sub-division of collaborative

artificial intelligence is Collaborative Machine Learning (CML), collaborative soft computing, and

collaborative support vector machines.

Non-Artificial Intelligent (NAI): The NAI uses indexing methods including bitmap and hashing

[52], as well as tree-based indexing methods like B-tree [59], [19], and R-tree [60-61]. With regard

to indexing creation and query response, this category of indexing strategies takes a simple

approach. Big data may be retrieved from the cloud relatively quickly and effectively using the

indexing techniques included in this group. These indexing strategies fall into a group that is unable

to identify large data's unpredicted behavior in cloud computing. The most frequently accessed

items in a given data collection are used to generate indexes, not the relationships between texts or

the meaning of the data items, as would otherwise be the case.

Artificial Intelligence (AI): AI can recognize the unidentified behavior of massive data, and can

apply rule-based automation for recognized patterns. Rule-based information was used in AI

indexing approaches to increase the effectiveness of huge data retrieval. These indexing methods

fall under a very scientific category. Machine learning, soft computing, knowledge representation,

and reasoning are all categories of artificial intelligence. When compared to NAI approaches, they

are frequently viewed as being less effective since they construct links between data items by

examining the trait or pattern and grouping things with comparable patterns [62]. Latent Semantic

Indexing is another indexing method used by AI [63-66].

Collaborative Artificial Intelligent (CAI): The accuracy and search time shortcomings of the AI

indexing methods are supplemented by the CAI indexing schemes. It uses artificial intelligence as a

foundation to create effective indexing algorithms that outperform AI approaches. The terms

Collaborative Knowledge Representation and Reasoning (CKRR) and Collaborative Machine

Learning (CML) are used to describe CAI methodologies. When it comes to indexing massive data

in a cloud computing context, the CAI and AI behave similarly.

The creation of indexes in NAI indexing methods is based on the objects that are often searched for

in the database. For instance, data retrieval is performed in a sorted manner in tree-based indexing

approaches, meeting the indexing techniques' reputation for their quick recall rate and storage cost

minimization. Data is hashed to increase retrieval precision and decrease memory use. With the

help of the feature fusion based hashing approach [67], it is possible to detect large-scale image

copies in a huge dataset for big data in cloud computing by making use of the relationship between

two feature models. This approach performs effectively in terms of data volume for large data

requirements.

Unknown behavior in massive data is found using AI indexing techniques. The indexing methods

rely on soft computing, knowledge representation and reasoning, and machine learning. An

Journal of Computer Science an Engineering (JCSE)
Vol. 3, No. 2, August 2022, pp. 71-94

e-ISSN 2721-0251

87
http://dx.doi.org/10.36596/jcse.v3i2.548

unstructured dataset can have patterns between its components according to the indexing technique

known as Latent Semantic Indexing (LSI), which is based on an artificial intelligence indexing

approach. It may build associations between phrases with comparable contexts and extract the

semantic meaning of a dataset. ML is an AI-based indexing technique that involves an iterative

process of pattern observation, mathematical adjustment, and prediction rating [12]. An AI-based

machine learning method is called "manifold learning." [68] suggested a concept of local subspace

indexing for image search that enables quick query selection. The program might incorporate

several learning algorithms to improve recognition performance.

An indexing strategy based on multi-agent or non-multi-agent systems benefits from the CAI

indexing techniques in terms of accuracy and search time. The effectiveness of these strategies also

depends on the collaborative power of the adopted method.

7. Performance Evaluation of hashing techniques based on Mean Average Precision (MAP)

MATLAB implementation that is freely accessible was used to evaluate some techniques reviewed

in this article. The primary assessment metrics for large-scale image retrieval studies are mean

average accuracy and precision-recall. Recall rate is a metric for determining and illustrating search

accuracy. The ratio of accurately recovered images to the total number of images actually retrieved

from a database is known as the recall rate. In this section, five cutting-edge hashing algorithms for

high-dimensional closest neighbor search were evaluated for performance. Among the algorithms

examined are:

DSH: Density sensitive hashing combines the advantages of data-dependent and data-independent

hashing algorithms [80]. It is a semi-supervised based hashing approach. The forecasts are

produced using basic concepts. This method creates projections using chosen principles rather than

completely random selection [80]. It is a development of LSH.

LSH: Locality sensitive hashing is a hashing-based approach that generates projections

independently of the distribution of the data. LSH makes projections at random. The vectors used

to generate the projections are chosen at random from a p-stable distribution. It applies to the

change detection domain and is an unsupervised approach [30]. SHD is a hashing-based approach

that makes use of spherical Hamming distance. KLSH generalizes the Locality Sensitive Hashing

to the Kernel Space [56], Shift-Invariant Kernel Hashing for estimating shift-invariant kernels [40].

The SIKH is based on random feature hashing.

7 Methods

This section looks at the geometric data features' magnitude structure. The image characteristics are

indexed using the results of the quantized hashing. The experiment used a combined strategy that

increases both search accuracy and precision while processing binary hash codes using five cutting-

edge hashing algorithms. To cut down on storage and computational costs as well as to improve the

precision and speed of queries, a dataset including sample data points was indexed. This work

addresses the samples of the data points as 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁, where X represents the database. 𝑋 =
{𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛, … , 𝑥𝑁} ∈ 𝑅𝑑 × 𝑁 represents the data points contained in the database. In this case,

X is the database and R^(d × N) is the dimensional space of size N. Mapping of these data points to

k-bit binary hash code is carried out by the hash function model in equation (25)

𝐻(𝑥) = {ℎ1(𝑥), … ℎ𝑘(𝑥)} ∈ {−1, 1}𝑘 (25)

Where length of the binary hash code is denoted by k..

A similarity-preserving term was used to improve search accuracy in a dataset. With a constrained

Hamming distance, the similarity preservation term refers to the similarities between the data

points Q(y). Comparative geometric feature points of the two data samples' similarities are

retrieved as Qij.

Equations (26) or (27) are used to balance the distribution of data points for each bit.

Journal of Computer Science an Engineering (JCSE)
Vol. 3, No. 2, August 2022, pp. 71-94

e-ISSN 2721-0251

88
http://dx.doi.org/10.36596/jcse.v3i2.548

𝑝𝑟[ℎ𝑖(𝑥𝑖) = 1] =
1

2
,𝑥 ∈ 𝑋, 1 ≤ 𝑖 ≤ 𝑡 (26)

𝑁𝑖 = ∑ 𝑁𝑖
2𝑀

𝑖=1 (27)

Where 𝑁𝑖 is the number of training samples in the 𝑖𝑡ℎ bucket and 𝑀 is the number of buckets. To

achieve independence between two bits given that 𝑥 ∈ 𝑋 and 1 ≤ 𝑖 < 𝑗 ≤ 𝑡 where i and j are the

𝑖𝑡ℎ and j𝑡ℎ data points, and t is the threshold, hash functions are design to be independent and the

data points are distributed equally to each hash bucket as in equation (28).

𝑝𝑟[ℎ𝑖(𝑥) = 1, ℎ𝑗(𝑥) = 1] = 𝑝𝑟[ℎ𝑖(𝑥) = 1] . 𝑝𝑟[ℎ𝑗(𝑥) = 1] =
1

2
 .

1

2
 =

1

4
 (28)

The next stage is to integrate the balanced partitioning sections with the similarity preserving term

to speed up and boost search accuracy at the same time. For search precision and the least amount

of information, we employ the similarity-preserving term Q(y). The joint optimization component is

accountable for the concurrent optimization of search precision and search time, enabling high

search precision with short search times. To make optimization easier, a linear function is

parameterized and relaxed.

The search accuracy is improved by reducing the Hamming distance between comparable data

pieces. Mathematically, this may be written as in equation (29):

𝑄(𝑦) ∑ 𝑥𝑖=1,…𝑁 + ∑ 𝑥𝑗=1,…𝑁 (29)

To improve search precision and speed at the same time, balanced partitioning and the similarity

preserving term are coupled.

7.1 Experimental Results

The dataset was subjected to hash functions, which produced hash codes with lengths of 8, 16, 32,

48, 64, and 96 bits. The mean average accuracy for each technique that was tested using the SIFT

1M data sets is shown in Figure 1. As can be observed, the random projection methods perform

poorly when the code length is small while improving as the code length rises in terms of mean

average accuracy. When the code length is low, the learning-based spherical hamming distance

performs quite well in comparison to MAP, but as the code length rises, no discernible

improvement was made. When the code length is short, as seen in Figure 1, the Geo SPEBH

reported a high MAP. The approach fails to effectively maintain the similarity between the binary

codes and the original data points, which results in the behavior of the SHD. With the exception of

the DSH method, the SHD performs better than every other algorithm when the code length is 96

bits. The date-independent based algorithms, on the other hand, perform well with lengthy binary

codes due to their capacity to randomly create their hash table while paying close attention to the

distribution of data points.

Journal of Computer Science an Engineering (JCSE)
Vol. 3, No. 2, August 2022, pp. 71-94

e-ISSN 2721-0251

89
http://dx.doi.org/10.36596/jcse.v3i2.548

Fig 1. The MAP of all algorithms on SIFT IM

The DSH [71] initially quantified the data by dividing up the points into groups using the k-means

method. To evaluate the accuracy of the provided quantization, sum of square error (SSE), which is

the same as distortion, is expressed as the quantisation result represented as S.

The training and testing times of the approach reduce as the dimension lowers because fewer

projections need to be made at random utilizing the geometric information in the data. Since DSH

includes calculating each projection's entropy in relation to the entire database, it takes longer as

the code length rises. The amount of bits necessary to implement each algorithm (i.e. 16, 32, 64,

and 96 bits) is the storage requirement.

The DSH has three parameters: p, which determines the number of k-means iterations, r, which

determines the number of r-adjacent groups, and, 𝛼 which determines the number of groups. The

default settings for 64-bit hash codes are p=3, 𝛼 =1.5, and r=3. As the k-means iteration count

varies, DSH's performance also changes. It is evident from the data that when the number of

iterations rises, the MAP and the learning time of DSH do as well. An acceptable MAP is obtained

after 3 iterations in k-means. Additionally, DSH's performance varies as the number of groups

represented by 𝛼 changes. As a result, the group number produced by k-means likewise alters. As

the group size grows, the MAP and the learning time of DSH also increases as 𝛼 =1.5, which

offers a fair balancing when examining efficiency and accuracy of the scheme. Additionally, DSH

performance varies with the number of r-adjacent groups, thus when r < 5, high performance was

attained.

Because in a d-dimensional space, a near area must be defined by d+1 hyperplanes, d+1

hyperplane are necessary to define a closed area in a hyperplane. DSH continually produces more

and more duplicated, less significant forecasts. DSH's performance suffers due to the redundant

projections, making it difficult to scale with massive databases. For this, an optimized method is

needed to maintain memory cost while balancing the trade-off between search accuracy and search

time.

Additionally, DSH creates additional projections that are utilized to separate two distant groups as

the number of r-adjacent groups rises. Making more and more forecasts becomes redundant and of

less importance. The performance of DSH is negatively impacted by projection redundancy. With

large datasets, DSH struggles to scale and ignores search time as a crucial hashing component.

Journal of Computer Science an Engineering (JCSE)
Vol. 3, No. 2, August 2022, pp. 71-94

e-ISSN 2721-0251

90
http://dx.doi.org/10.36596/jcse.v3i2.548

Table 2 gives the description of the performance of each hashing technique based on mean average

precision. The description in Table 2 helps to assess the effectiveness of algorithms based on MAP

and storage evaluation of hashing approaches.

Table 2. Performance of hashing techniques based on Mean Average Precision

Method of

hashing

techniques

Authors MAP

Storage

 Very Good Good Average Very Good Good Average

SHD [34]

LSH [30]

DSH [80]

KLSH [56]

SIKH [40]

8. Discussion and future directions

In relation to large data in cloud computing, many indexing algorithms have been given and

analyzed to highlight their merits and flaws.

Data Reduction: A proposed square kilometer array telescope now generates millions of terabytes

of data, while petabytes of data are produced by scientific research and modeling results. The

majority of these massive data sets are chaotic or unstructured. These noisy and unstructured data

need to be repaired, well-organized, and formatted simply. The filters used to filter the

experimental and simulation data are designed to prevent the loss of important data. Because of

this, the science of data reduction turns into a murky field that has to be investigated by academics.

Data provenance is implied by the ability to comprehend information and move it through the

analysis pipeline. In order to trace the connection and transport data provenance across data

analysis pipelines, it is preferable that a data system be created.

Data description: Determining the quantity of the stored data and describing the type of data as it is

being saved are crucial. To define and comprehend the stored data for these, it is necessary to

automatically produce accurate metadata. Researchers should thus focus on developing data

systems that can produce metadata and transmit that metadata through data analysis pipelines.

Data Integration: Raw data gathered from sensor devices, student records, health records, x-ray

image data, graph data from mathematical and statistical analysis, photographs, and videos cannot

be successfully analyzed. In order to collect information from the many sources, arrange it, and put

it in a manner that can be analyzed, researchers urgently need to create a strategy.

Data Analysis and Mining: Data mining and analysis are necessary in order to make huge data

relevant for decision-making. Relational databases are only partially capable of doing in-depth

analyses of massive data in cloud computing. Therefore, it is advised that researchers create a

productive big data analysis strategy.

To help users pick the best method for indexing big data in cloud computing, users should take into

account search time, a crucial performance measure in assessing the speed necessary to retrieve

information from a database. Additionally, while constructing and selecting an indexing technique,

the amount of bandwidth needed to move data from source to destination must be taken into

account.

Journal of Computer Science an Engineering (JCSE)
Vol. 3, No. 2, August 2022, pp. 71-94

e-ISSN 2721-0251

91
http://dx.doi.org/10.36596/jcse.v3i2.548

9. Conclusion

The datasets used, as well as the organization, categorization, and comparison of big data storage,

management, and indexing strategies, were reported in this study. This study also examines the

performance evaluation of indexing strategies based on their categorization. Big data indexing

requirements, including volume, velocity, variety, veracity, value, variability, and complexity, were

the basis for the evaluation. The study's major goal is to analyze these big data indexing needs and

define existing approaches in order to inform famous researchers about the fundamentals that will

serve as a framework for developing optimized indexing strategies for specific platforms to support

the veracity of big data. The report addressed issues with the approaches already in use and made

suggestions on how to fix them (Table 1). The taxonomy includes NAI, AI, and CAI as the

indexing methods that are currently available. Future research directions are presented in the

debate. In order to assess the effectiveness of algorithms based on MAP, Precision-Recall, and

storage, evaluation of hashing approaches was done.

References

[1] Thilkanathan, Danan, S. C., Surya, N., Rafael, C., & Leila, A. (2014). A platform for monitoring and

sharing of generic health data in the cloud. Future generation computer system, 35, 102-113. Retrieved

April 9, 2017. https://doi.org/10.1016/j.future.2013.09.011

[2] Huang, Z., Heng, T. S., & Shao, J. (2010). Bounded Coordinate System Indexing for Real-time. ACM

Transactions on Information Systems, 10(10), 1-32. https://doi.org/10.1145/1508850.1508855

[3] Gartner M, Rauber, A., & Berger, H. (2013). Briging structured and unstructured data via hybrid

semantic search and interactive ontology-enhanced query formulation. Knowledge information system,

1-32. https://doi.org/10.1007/s10115-013-0678-y

[4] Armbrust, M., Fox , A., Griffith, R., Joseph, A. D., Katz, H. R., & Ko, A. (2009, 2). Above the clouds:

Berkeley view of cloud computing, Technical Report UCB/EECS.Materials Genome initiative for Global

Competitiveness. https://inst.eecs.berkeley.edu/~cs10/fa10/lec/20/2010-11-10-CS10-L20-AF-Cloud-

Computing.pdf

[5] Agrawal, D., Bernstein, P., Bertino, E., Davidson, S.,& Dayal, U. (2012). Challenges and Opportunities

with Big Data. A white paper prepared for the Computing Community Consortium, 1-16.

https://cra.org/ccc/wp-content/uploads/sites/2/2015/05/bigdatawhitepaper.pdf

[6] Chang, c., Kayed, M., Girgis, M. R., & Shaalam, K. F. (2006). A survey of web information extraction

system. IEEE Transaction on Knowledge and Data Engineering, 18(10), 1411-1428.

https://doi.org/10.1109/TKDE.2006.152

[7] Agrawa, C. C., & Wang, H. (2010). Managing and mining graph data. Springer publishing company.

https://doi.org/10.1007/978-1-4419-6045-0

[8] Hosagrahar, V. J., Beng, C., Kian-Lee, T., Cui, Y., & Rui, Z. (2005). iDistance: An adaptive B+-tree

based indexing method for nearest neighbour search. ACM Transaction on Database Systems, 30(2),

364-397. https://doi.org/10.1145/1071610.1071612

[9] Muja, M., & Lowe, D. G. (2009). Fast approximate nearest neighbours with automatic algorithm

configuration. VISAPP, 331-340.

[10] Jon, L. B. (1975). Multidimensional Binary Search Trees Used for Associative Searching. ACM, 18(9),

509-517. https://doi.org/10.1145/361002.361007

[11] Chanop, S.-A., & Richard, H. (2008). Optimised KD-trees for fast image descriptor matching. IEEE

Conference on Computer Vision and Pattern Recognition, 1-8.

https://doi.org/10.1109/CVPR.2008.4587638

[12] Shamshirband, S., Anuar, N., Kiah, M., & Patel, A. (2013). An appraisal and design of a multi-agent

system based cooperative wireless intrusion detection computational intelligence technique.

Engineering Application of Artificial Intelligent. , 26(8), 2105-2127.

https://doi.org/10.1016/j.engappai.2013.04.010

[13] Aguilera M, K., Golab, W., & Shah, M. A. (2008). A practical scalable distributed b-tree. Proceedings

of the VLDB Endowment, 1(1), 598–609. https://doi.org/10.14778/1453856.1453922

[14] Jaluta, I. (2014, April). Transaction management in b-tree-indexed database systems. In Information

Science, Electronics and Electrical Engineering. International conference on, 3, 1968-1975.

https://doi.org/10.1109/InfoSEEE.2014.6946267

[15] Frome, A., Singer, Y., Sha, F., & Malik, J. (2008, June). Learning globally-consistent local. ICCV.

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/shape/papers/FromeSingerShaMalikICCV

07.pdf

https://doi.org/10.1016/j.future.2013.09.011
https://doi.org/10.1109/TKDE.2006.152

Journal of Computer Science an Engineering (JCSE)
Vol. 3, No. 2, August 2022, pp. 71-94

e-ISSN 2721-0251

92
http://dx.doi.org/10.36596/jcse.v3i2.548

[16] Friedman, J., Bentley, J. L., & Finkel, R. A. (1977). An algorithm for finding best matches in

logarithmic expected time. ACM Transaction on Mathematical Software, 3(3), 209-226.

https://doi.org/10.1145/355744.355745

[17] Kai, Z. Y., Nicholas, J. Y., & Shuo, S. (2013). Discovering of gathering patterns from trajectories.

ICDE. https://doi.org/10.1109/ICDE.2013.6544829

[18] Hoyoung, J., Man, L. Y., Xiaofang, Z., Christian, S. J.,& Heng, T. S. (2008). Discovery of convoys in

trajectory databases. VLDBJ. https://doi.org/10.14778/1453856.1453971

[19] Yu, Y., Zhu, Y., Ng, W., & Samsudin, J. (2014, 12). An efficient multidimension metadata index and

search system for cloud data,” in Cloud Computing technology and science. IEEE Transaction on, 499-

504. https://doi.org/10.1109/CloudCom.2014.88

[20] Dieter, P., Christian, S. J., & Yanmis, T. (2000). Novel approaches to the indexing of moving objects

trajectories. VDLB.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.3875&rep=rep1&type=pdf

[21] Lei, C., Tammer, M. O., & Vincent, O. (2005). Robust and fast similarity search for moving object

trajectories. ICDE. https://doi.org/10.1145/1066157.1066213

[22] Michail, V., George, K., & Dimitrios. (2002). Discovering similar multidimensional trajectories. ICDE.

https://doi.org/10.1109/ICDE.2002.994784

[23] Prateek Jain, B. K. (2008, 6). Fast image search for learned metrics. In proceeding of the IEEE

conference on computer vision and pattern recognition. https://doi.org/10.1109/CVPR.2008.4587841

[24] Xu, H., Wang, J., Li, Z., Zeng, G., Li, S., & Yu, N. (2011). Complementary hashing for approximate

nearest neighbor search. In Proc. ICCV. https://doi.org/10.1109/ICCV.2011.6126424

 [25] Kulis, B., Jain, P., & Grauman, K. (2009). Fast similarity search for learned metrics. TPAMI,

31(12), 2143–2157. https://doi.org/10.1109/TPAMI.2009.151

[26] Torralba, A., Fergus, R., & Freeman, W. T. (2008). 80 million tiny images: a large dataset for non-

parametric object and scene recognition. TPAMI, 30(11), 1958–1970,.

https://doi.org/10.1109/TPAMI.2008.128

 [27] Strecha, C, A. M., M, M. B., & P, F. (2012). Ldahash: Improved matching with smaller descriptors.

TPAMI, 34(1), 66-76. https://doi.org/10.1109/TPAMI.2011.103

[28] Zhu, X., Huang, Z., Cheng, H., Cui, J., & Shen, H. T. (2013). Sparse hashing for fast multimedia search.

ACM Transaction on information system, 3(2), 1-24. https://doi.org/10.1145/2457465.2457469

[29] Avidan, S., & Korman, S. (2011). Coherency sensitive hashing. In Proceedings of ICCV.

https://doi.org/10.1109/ICCV.2011.6126421

[30] Datar, M., Immorlica, N., Indyk, P., & Mirrokni, P. (2004). Locality sensitive hashing scheme based on

p-stable distributions. In Proceedings of the Symposium on Computational Geometry, 253–262.

https://doi.org/10.1145/997817.997857

[31] Zhou, A. (2005). c^2: a new overlay network based on can and chord. international journal of high

performance computing network, 3(4), 248-261. https://doi.org/10.1007/978-3-540-24679-4_15

[32] W. Liu, J. Wang, R. J. Y-G. Jang, S-F Chang., (2012). Supervised hashing with kernels. In computer

vision and pattern recognition. https://doi.org/10.1109/CVPR.2012.6247912

[33] A. Jolly & O. Buisson. (2011). Random maximum margin hashing. CVPR.

https://doi.org/10.1109/CVPR.2011.5995709

[34] H. Jae-Pil, L. Youngwoon, H. Junfeng, C. Shih-Fu, Y. Sung_Eui, (2015). Spherical Hashing: Binary

Code Embedding with Hyperspheres. IEEE transaction on Pattern Analysis and Machine Intelligent, 1-

14. https://doi.org/10.1109/TPAMI.2015.2408363

[35] J. He, R. Rhadhakrishnan, S-F Chang and C. Bauer. (2011). Compact hashing with joint optimisation of

search accuracy and time. CVPR. https://doi.org/10.1109/CVPR.2011.5995518

[36] Y. Gong and S. Lazebnik. (2011). Itetrative Quantisation: a procrustean approach to learning binary

codes for large-scale image retrieval. IEEE transaction on pattern analysis and machine inteliigence.

https://doi.org/10.1109/TPAMI.2012.193

[37] A. Torralba, R. fergus, and Y. Weiss, (2008). Small codes and large image dtatabases for recognition.

CVPR. https://doi.org/10.1109/CVPR.2008.4587633

[38] Y. Weiss, A. Torralba, and R. fergus, . (2008). Spectral Hashing. in proceedings of NIPS.

[39] O. Chum, J. Philbin, A. Zisseman, (2008). Near duplicate image detectionmin-hash and tf-idf

weighting. BMVC.

[40] M. Rangisky and S. Lazebnik. (2009). Locality sensitive binary codes from shift-invariant kernels. in

proceedings od NIPS, 1509-1517.

[41] R. Salakhutdinov, G. Hinton, (2009). Semantic Hashing. International Journal of Approximate

reasoning. https://doi.org/10.1016/j.ijar.2008.11.006

[42] Boukari Souley, A. U. Othman (2019). Geometric Similarity Preserving Embedding-Based Hashing for

Bid Data in Clou Computing. International Journal of research and Scientific Innovation.

Journal of Computer Science an Engineering (JCSE)
Vol. 3, No. 2, August 2022, pp. 71-94

e-ISSN 2721-0251

93
http://dx.doi.org/10.36596/jcse.v3i2.548

[43] J. Wang, S. Kumar, S-F Chang,. (2010). Sequential projection learning for hashing with compact codes.

ICML.

[44] L. Pauleve, H. Jegou, L. Amsaleg, (2010). Locality sensitive Hashing: A comparison of hash function

types and queryong mechanism. Pattern recognition Letters.

https://doi.org/10.1016/j.patrec.2010.04.004

[45] J. Wang, S. Kumar, and S-F Chang, (2010). Semi-supervised hashing for scalable image retrieval.

CVPR. https://doi.org/10.1109/CVPR.2010.5539994

[46] R-S Lin, D. Rose, J. Yangik, (2010). Spec Hashing: Similarity preserving algorithm for entropy-base

coding. CVPR. https://doi.org/10.1109/CVPR.2010.5540129

[47] R. Ye, Z. Li, (2016). Compact structure hashing via sparse and similarity preserving embedding. IEEE

transaction on cybernatics, 46(3), 718-729. https://doi.org/10.1109/TCYB.2015.2414299

[48] H. Zhang, L. Liu, Y. Yong, L. Shao, (2017). Unsupervised deep hashing with pseudo labels for scalable

image retrieeval. https://doi.org/10.1109/TIP. 2017. 2781422

[49] Y. Lv, W. Y. Ng Wing, Z. Zeng, S. D. Yeung,and P. K. Patrick (2015). Asymmetric Cyslical Hashing

for Large Scale Image Retrieval. IEEE transaction on multimedia, 11(8), 1225-1235.

https://doi.org/10.1109/TMM.2015.2437712

[50] M. Norouzi and D. J. Fleet. (2011). Minimal Hashing for Compact binary codes. ICML.

[51] Kadiyala S, S. N. (2008). A compact multi-resolution indedx for variable length queries in time series

database. Knowledge information system, 15(2), 131-147. https://doi.org/10.1007/s10115-007-0097-z

[52] Meshram, B. B., & Gaikwad, G. P. (2013, 4). Different indexing techniques. International Journal of

Engineering Research and Application, 3(2), 1230-1235.

[53] Chen, J., Yuegue, C., Lia, E., Cuiping, I. L., & Jiaheng, U. L. (2013). Big Data Challenges: A data

Management Perspective. Higher education press and springer verlag Berlin Heidelberg, 7(2), 157-

164. http://dx.doi.org/10.1007/s11704-013-3903-7

[54] Kaisler, S.,Armour, F., Espinosa , J. A., & Money, W. (2013). Big data: issues and challenges moving

forward. Hawii international conference on system sciences, 995-1004.

http://dx.doi.org/10.1109/HICSS.2013.645

[55] M. S. Charkar, (2002). Similarity estimation techniques from rounding algorithms. In Proceedings of

Annual ACM Symposium on Theory of Computation, 380-388. https://doi.org/10.1145/509907.509965

[56] B. Kulis, K. Grauman, (2009, September-October). Kernelised Locality-sensitive hashing for scalable

image search. In Proceedings of IEEE conference on computer vision and pattern recognition, 2130-

2137. http://dx.doi.org/10.1109/ICCV.2009.5459466

[57] B. Souley, A. U. Othman, A. Y. Gital and I. M. Adamu, (2019). Performance evaluation of GSPEBH

for big data in cloud computing. Global Scientific Journal.

[58] C. Yan, H. Xie, D. Yang, J. Yin, Y. Zhang, (2018). Supervised hash coding with deep neural network

for environment perception of intelligent vehicles. IEEE transaction on intelligent transportation

systems, 19(1), 284-295. https://doi.org/10.1109/TITS.2017.2749965

[59] M. He, Y. Yang, F. Shen, N. Xie, and H. T. Shen, (2017). Hashing with Angular Reconstruction

Embeddings. IEEE Transactions on Image Processing. 27(5), 545-555.

https://doi.org/10.1109/TIP.2017.2749147

[60] Nussinov, R., & Wolfson, H. J. (1991, 12 01). Efficient Detection of three-Dimensional Structural

Motifs in Biological Macromolecules by Computer Vision techniques. Peoceedings of the National

Academy of Science America, 88(23), 10495-10499. https://doi.org/10.1073%2Fpnas.88.23.10495

[61] Mehrotra, H., Majhi, B., & Gupta, P. (2010). Robust ris indexing scheme using geometric hashing of

SIFT keypoints. Journal of Network and Computer Applications, 33, 300–313.

https://doi.org/10.1016/j.jnca.2009.12.005

[62] Lowe, D. (2004). Distinctive image features from scale-invariant key points. International Journal of

Computer Vision 60, 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94.

[63] Jayaraman, U., Surya, P., & Phalguni, G. (2013). Use of geometric features of principal components for

indexing a biometric database. Mathematical aand Computing Modelling, 58, 147-164.

https://doi.org/10.1016/j.mcm.2012.06.005

[64] Li, F., Yi, K., & Le, W. (2010). Top-k queries on temporal data. VLDB, 19(5), 715-733.

http://dx.doi.org/10.1007/s00778-010-0186-6

[65] Sandu P, I., Zeitouni, K., Oria, V., Barth , D., & Vial, S. (2011). Indexing in network trajectory flows.

VLDBJ, 20(5), 643-669. https://doi.org/10.1007/s00778-011-0236-8

[66] Dittrichter. (2011). MOVIES: Indexing moving objects by shooting index images. Geoinformatics,

15(4), 727-767. http://dx.doi.org/10.1007/s10707-011-0122-y

[67] Xie, M., Wang, H., Yin, J., & Meng, X. (2007). Integrity auditing of outsourced data. In Proceedings of

the International Conference on Very Large Databases, 782-793.

Journal of Computer Science an Engineering (JCSE)
Vol. 3, No. 2, August 2022, pp. 71-94

e-ISSN 2721-0251

94
http://dx.doi.org/10.36596/jcse.v3i2.548

[68] Vandana, D. K., Jayaraman, U., Amit, K., Aman, K. G., & Gupta, P. (2013). An efficient indexing

scheme for face database using modified geometric hashing. Neurocomputing, 116, 208-221.

https://doi.org/10.1016/j.neucom.2011.12.056

[69] Umarani, J., Surya, P., & Phalguni, G. (2013). Use of geimetric features of principal components for

indexing a biometric database. Mathematical and computing modelling, 58, 147-164.

https://doi.org/10.1016/j.mcm.2012.06.005

[70] Ling-Yin, Y.-T. H.-C.-C. (2013). Indexing spatial data in cloud data management. Pervasive mobile

computing, 1-14. https://doi.org/10.1016/j.pmcj.2013.07.001

[71] Xiaohui, Yu, K. Q., & Nick, K. (2005). Monitoring K-nearest neighbour queries over moving objects.

In Proceedings of the 21st International Conference on Data Engineering.

https://doi.org/10.1109/ICDE.2005.92

[72] Wang, M., Viliam, H., John, M., & Patrick, O. (2013, 2). High volumes of event stream indexing and

efficient multi-keyword searching for cloud monitoring. Future generation computer, 29, 1943-1962.

https://doi.org/10.1016/j.future.2013.04.028

[73] Wang, J., Wu, S., Gao, H., Li, J., & Ooi, B. C. (2010). Indexing Multidimensional Data in a Cloud

System. ACM SIGMOD International conference on management of data, 591-602.

https://doi.org/10.1145/1807167.1807232

[74] Spek, P. V., & Steven, K. (2011). Applying a dynamic threshold to improve cluster detection LSI.

Science of computer programming, 76, 1261-1274. https://doi.org/10.1016/j.scico.2010.12.004

[75] James, C., Yiping, K., Ada, W.-C. F., & Jeffrey, X. Y. (2011). Fast grapbh query processing with low-

cost index. The VLDB journal, 20(4), 521-539. https://doi.org/10.1007/s00778-010-0212-8

[76] Giangreco, I., Kabary, I. A., & Schuldt, H. (2014, 06). Adam - a database and information retrieval

system for big multimedia collections. IEEE International Conference on, 406-413.

https://doi.org/10.1109/BigData.Congress.2014.66

[77] Collins, E. (2014). Intersection of the cloud and big data. IEE Cloud Computing 1, 84-85.

http://dx.doi.org/10.1109/MCC.2014.12

[78] Cackett, D. (2013). Information Management and Big data: A reference Architecture. Oracle

corperation.

[79] Wook-shin, H., Jinsoo, L., & Minh-Duc, P. (2010). iGraph: A framework for comparing a disk-based

grapph indexing techniques. Proceedings of the VCLD endowment, 3(1).

[80] Jin Z, L. C., Lin, Y., & Cai, D. (2014, august). Density Sensitive Hashing. IEEE transactions on

Cybernetics, 44(8), 1362-1371. https://doi.org/10.1109/TCYB.2013.2283497

[81] Ferragina, P., & Rossano, V. (2007, 7). The ompressed permuterm index. In proceedings of SIGIR, 535-

542. https://doi.org/10.1145/1868237.1868248

[82] JJinbao, W., Wu, S., Gao, J., Li, J., & Ooi, C. B. (2010). Indexing multi-dimensional data in a cloud

system. SIGMOD. https://doi.org/10.1145/1807167.1807232

