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1. Introduction

A web-based program called cloud computing offers a shared pool of resources. Mobile devices,
like smartphones and tablets, may now be used for a wide range of various purposes thanks to
advancements in mobile technology [1]. The accessibility of the internet, through the use of widely
available broadband Internet access [2], in combination with these portable (mobile) devices, led to
the simple collection of digital information in terms of structured and unstructured data [3], which
in turn had contributed to the availability of large volumes of data known as big data.

The massive volume of data created each day has outgrown data processing systems like databases
and warehouses. Modern technologies are desperately required to handle this varied volume of data
properly. Big data analysis in the cloud requires effective technology or methodologies. Big data
indexing in cloud computing aims to provide effective information retrieval from enormous
datasets as well as to enhance capacity and capability at runtime without investing in new
equipment, purchasing new licenses for software, or hiring new personnel. Through the internet,
cloud computing enables consumers to access cloud services on-the-fly and pay as they go [4].
Hardware as a Service (HaaS), Software as a Service (SaaS), Platform as a Service (PaaS),
Communication as a Service (CaaS), Infrastructure as a Service (laaS), Data storage as a Service
(DaaS), Security as a Service (SecaaS), and Business as a Service (BaaS) are among these services.
Data storage as a Service is utilized for the indexing of huge data on the cloud.

Science research has been significantly altered and affected by big data. Astronomers now utilize
the Sloan digital sky survey as a collection of tools and data base [5]. The majority of an
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astronomer's work in the field of astronomy used to be taking images of the sky, but now that those
photos have been catalogued in a database, other astronomers may utilize the objects from the
catalogued photos. Data from company purchasing transactions is effectively kept on the cloud.
Databases are built so that other biologists and scientists may use the generated biological and
scientific data, and biological data and experimental data are saved in a public storage facility.

Today, it is highly challenging to gain access to a very big database where information on a
patient's diagnosed ailment may be utilized to track the development of his health. These data
might be utilized to develop effective and efficient healthcare practices, starting with diagnosis,
prescription, patient monitoring, suggestion, referral, and emergency cases. The growing paradigm
of mobile devices that enable cloud-based continuous patient monitoring in their homes through the
use of information technology is a satisfying approach to significantly reduce costs. In order for the
information retrieved to be utilised by the analysis method, the generated unstructured data must be
structuralized [6].

Similar to how it has an impact on decision-making, big data has an impact on urban planning
(through the fusion of high fidelity geographic data), intelligent transportation systems (through
analysis visualisation of live and detailed road network system data), environmental modeling
(through ubiquitous sensor networks collecting data), energy conservation (through revealing
patterns of use), and smart materials (through new material genome initiatives) [5]. Big data
processing became incredibly challenging, making a highly result-oriented method ideal to
maximize the speed of data query processing. For this, effective access to huge data in the cloud
requires optimized indexing strategies. Big data is a term used to describe a graph dataset that is
many terabytes in size and cannot be handled by DBMSs. Such several graph mining algorithms
have been proposed [7].

Researchers have, however, suggested several indexing methods with a focus on huge data in cloud
computing. Similarity searches; Approximate Nearest Neighbor (ANN) indexing approaches have
been an area of interest for study and tree-based algorithms [8-11] have recently been used for
indexing in order to efficiently retrieve huge data on the cloud. [12] suggested R-tree-based
indexing as a way to index multi-dimensional data on the cloud. An indexing technique called
distributed B-tree allows for high concurrency reading operations while also enabling consistent
and concurrent updating [13-14]. In a biometric system, databases are recognized so that a more
effective indexing strategy can increase throughput by reducing the search space for query images.
The majority of the time, nearest neighbor classifiers are used for form matching and image
recognition [15]. KD-tree [16] is a multi-dimensional indexing system that was presented for
finding the best matches with less time spent. Trajectory indexing systems have been intensively
researched for extracting knowledge from trajectory data [17-18], creating efficient indexing
structures [19-20], managing uncertainty, and processing trajectory queries [21-22]. Hash-based
indexing techniques are renowned for their efficiency in search and similarity computation as well
as their effectiveness in application areas like large-scale vision problems, such as image retrieval
[23-24], image search [25], object recognition [26], local descriptor compressing [27], fast
multimedia search [28], and image matching [29]. While the c? [31] is utilized for preserving index
items in d-dimensional data, [30] applied approximate similarity search. Many more hashing-based
indexing approaches [32-50] were presented for effective big data management, storage needs, and
retrieval.

Large data analysis should be quicker and cheaper [51], with effective indexing strategies allowing
for faster indexing of big data findings while yet tolerating high costs. Obtaining a structured
indexing of the original video material and being familiar with its embedded semantics similarly to
humans were the goals of content-based image indexing and retrieval, video indexing, and audio
indexing [52].

This paper serves as a menu for choosing indexing approaches, offering scholars a way to
comprehend and gain insight into the various indexing techniques and the issues they raise. Big
data requirements in terms of volume, velocity, truthfulness, value, variability, diversity, and
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complexity must be met through an effective indexing strategy. However, these research sought to
solve the following problems and provide the following contributions to knowledge.
e Emphasize the cutting-edge methods currently being utilized for indexing huge data.
o Identifies related issues with the suggested indexing methods for huge data.
e Propose solutions to address the shortcomings (inefficiency) of the current big data
indexing approaches.
o Identify the difficulties and needs for big data indexing.
e To describe potential prospects for research into indexing methods for massive data in
cloud computing.
e Use Mean Average Precision to gauge how well indexing approaches operate.

2. Big data indexing requirements and challenges

For effective indexing of huge data in cloud computing, many indexing strategies are created.
Different criteria are used to assess how well the established indexing techniques work. The most
prevalent and fundamental metrics are the indexing technique's speed and accuracy. An indexing
technique's velocity requirements are its speed, while its veracity requirements are its accuracy.
Volume, variety, value, variability, and complexity are additional needs. Big data requirements for
privacy and usability provide a significant problem, but they are outside the purview of this
research and will be investigated in other publications. These huge data issues are necessary for
evaluating and contrasting indexing technigues. The following obstacles and needs are listed:

e Volume: is a term that is frequently used to describe size in numerous contexts. The
magnitude of large data is a difficulty for effective big data indexing and management.
Currently, depending on the application area where big data is employed, data are
continually growing from terabytes to zettabytes of dataset. Big data volume increase
mostly in the field of research as new discoveries were discovered. Big data cannot be
measured. Huge amounts of data, or "big data,” have also been tremendously influenced by
the accessibility of the internet and portable electronics.

¢ Velocity: Handling the rate at which new data are generated and current data are updated is
a problem [53]. Due to the widespread use of sensing and mobile devices, enormous
amounts of data are continuously and often created, and the outdated data may be easily
updated thanks to the accessibility of internet services, broadband, and portable devices
like smartphones. The storage system responds to the data when new data is created by
indexing and storing the updated and newly generated data in the cloud. Data must be
indexed at an extremely fast rate. The richness of data, which has greatly risen and is
utilized for communication via social networks, as well as its speed both have a significant
impact on the telecommunications business. Big data velocity, then, is the pace of data
collection and the time it takes to process the data after it has been gathered.

e Veracity: The hallmark of big data veracity is the correctness of the data. It may be quite
challenging to determine which data is damaged and which is not, as well as if the created
data came from a trustworthy source and can be believed. A very important component of
any big data demand is big data truth.

e Value: The importance of data in terms of decision-making is referred to as big data value.
Big data should have an impact on potential advantages, business transactions, insight, and
communication values.

e Variety: Data are gathered in a variety of forms and models from many sources, including
databases. The information may come from emails, sensors, mobile devices, social
networking sites like Facebook and Twitter, web pages, blogs, images, and videos,
business transactions, RFID readings, and papers from the healthcare and/or aviation
industries. The difficulty is in organizing the many forms of data into a dataset and
correlating their meanings. Structured, semi-structured, and unstructured data are the many
data kinds. Big data variety may be defined as the semantic interpretation, heterogeneity of
data kind, and heterogeneity of data format.

e Variability: The rise in mobile device accessibility and affordability, along with the quick
rise in broadband accessibility and affordability, have significantly increased the use of
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sensor devices, including body-warn sensors, sensor networks, social networks, and
information retrieval for e-commerce. As these technologies are used more often, network
congestion arises, slowing down data downloads and uploads and disrupting the flow of
large data.

o Complexity: A feature linked to the complexity of big data is the degree of
interconnectedness, interdependencies, and very large datasets [54].

3. State-of-the-art indexing techniques

The literature on various indexing algorithms is briefly reviewed in this part, with an emphasis on
large data in cloud computing. The primary application of the currently available approaches is to
index large amounts of data in the cloud.

Data-independent indexing strategies, commonly referred to as randomised hashing methods, are
categorized as hashing-based indexing schemes [30], [40], [42] and [55-56]. The projections used
by this class of hashing-based indexing methods are generated at random, and the hash function is
created using data distribution via data-dependent binary code embedding techniques [57].

By minimizing the Hamming distance between two binary codes in the original feature space as the
code length rises, supervised hash coding using deep neural networks [58] was suggested to
enhance retrieval accuracy. This leads to the generation of lengthy codes to reach sufficient
performance. By minimizing the reconstructive error between the cosine similarity calculated by
the original features and the resultant binary embedding, [59] introduced a unique angular
reconstructive embedding (ARE) that learns binary hash codes.

Finding two-dimensional objects represented by discrete points that have undergone an affine
translation is possible through the use of geometric hashing [60]. A point-based indexing method
called geometric hashing is utilized to index a biometric database. Geometric hashing uses the base
pairs of the Speeded-Up Robust Features (SURF) key points as the indexing components. Using
Scale Invariant Feature Transform (SIFT) to identify key points and a geometric base indexing
approach to transfer the identified key points into a hash table, [61] suggested a robust iris indexing
strategy to index iris datasets (Geometric hashing). Two steps comprise geometric hashing; the
stages of pre-processing and recognition. A hash table is produced during the pre-processing stage.
Features are taken from pictures or objects and stored in the hash table as key points in a database.
The Difference of Gaussian (DOG) function, as defined in equations (1) and (2), was employed by
the authors to identify prospective interest points [62].

D(X'Y'U)=L(x'y'k0)—ll(x'y'0) (1)
L(x,y,0) = G(x,y,0) * 1(x,) (2)

Where k is the constant multiplicative factor used to change the scale and x,y are the coordinates of
a pixel in image I, and L(x,y, o) is determined from equation (2) where G (x, y, a)is the Gaussian
filter for smoothing the image, and o is defined as the width of the filter. A gradient orientation
histogram is used to locate the key points once each key site is given an orientation. Equations (3)
and (4) below calculate the magnitude and direction as follows:

m(x'J’) = v (L(X + 1'}’) - L(x - 1:3’))2 + (L(ny + 1) - L(x!yl))z (3)
o = o (St

P = upj, + vpj, + p} (5)

In equation (5) above, P = [x, y] is the set of key points to be indexed, and (u, v) is the position of
point p (the key point) following similarity transformation. m(x, y) and 6(x, y) are the magnitude
and orientation, respectively [63].
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Due to the many insertions of image features that have been extracted into the hash table to
accommaodate every potential rotation and translation, this technique is inefficient because, it leads
to high computational and memory costs.

Regarding guiding principles and significant operators capable of mapping linked data with search
keys, B-tree indexing-based approaches are connected to an audit of multi-dimensional large data.
One of the characteristics of big data is their ability to manage data in massive volumes of various
sizes. [64] suggests an effective indexing system for temporal data ranking queries. Top-k searches
on temporal data are answered in this study in almost linear time, with projected low 1/0 costs. The
SEB-Tree was created by the authors using the B-tree. They produced a set of I1+1 independent
samples of the set S, where S is the set of segments shown in equation (6).

=1 [log (g) + log(%)] (6)

N is the database's number, B is the block size, and Kk is the query parameter [65-66].
Despite being effective, the approach cannot handle live data streams since their behaviors are
unknown.

In order to enable data owners to freely put data into a database at any moment, integrity auditing
of outsourced data was recommended [67]. For query authentication, the authors employed a
probabilistic technique, which is simpler and more flexible to implement. The authors just add a
few tuples to the external database. The tuples are then authenticated using equation (7) to
determine if they are genuine or fraudulent.

_ | h(tid ®al..®a,) tisreal
ah = {h(tidEBal...EBan)+1 t is fake ()

where t; is the ti, tuple, h is the hashing algorithm, and a is the header column

Because the way these records are formed has a significant influence on the storage performance of
the scheme, both the randomized and the deterministic ways for creating the inserted tuple are
explored. Absolute accuracy for query authentication is not guaranteed by the technique, which is
an issue [64].

[68] suggested an effective indexing method for a face database. The new indexing method was
created by the authors of this work using hashing. The hash table and descriptor vector for model
recognition were created using the coordinates of the control points. Control points are the
elements that give an image its distinctive qualities. Utilizing Speeded-Up Robust Characteristics
(SURF), control point features are retrieved. To make the control points invariant to translation,
rotation, and scaling, a pre-processing method is utilized. This method comprises mean centering,
principal component rotation, and normalization. After that, mean centering is used to reduce the
impact of noise. The mean of all the translated control points is zero once each control point has
been translated. Utilizing the direction of the control points that stayed constant even when some of
the points are not accessible, the rotation of the control points-based primary components is
accomplished. Using the Principal Components Analysis (PCA), this is accomplished. By
performing a dot product of a point vector with the principal component vector, which gives the
projection of the point on the principal component, coordinates are rotated with respect to their
mean such that the first and second principal components are aligned along the x- and y-axis of the
coordinate system.

The updated geometric hashing is scale-invariant thanks to normalization. To obtain the normalized
coordinate values for each control point, the standard deviation of coordinate values is employed as
follows:

hy = —qyx (8)

Ox

75
http://dx.doi.org/10.36596/jcse.v3i2.548



Journal of Computer Science an Engineering (JCSE) e-ISSN 2721-0251
vol. 3, No. 2, August 2022, pp. 71-94

hy = ainIy 9)
Where g, and o,are the standard deviation, h, and h,, are the normalized coordinate values, g,
and q,, are the coordinate values. Each control point takes up a distinct bin in the hash table as a
result of scaling factors multiplied by the normalized coordinate values of the control points.
Voting is then utilized to discover the top k best matches against the query from the models kept.
The resulting table is searched against control points of a query for recognition so that dissimilar
control points to the query's control points are removed [68].

When compared to previous strategies, experimental findings for the suggested technique reveal
that both the computational cost and utilization of memory space have been significantly decreased.
The approach is redundant in that each normalized point of the altered query model has to be
validated to confirm that specific point exists in the hash table, even though memory and
computational costs are both decreased.

[69] suggests an indexing method for a biometric database made up of several attributes with a
configurable number of dimensions. The research makes advantage of the geometric aspects of the
features' principle components such that, after rotating the first two highest principal components to
the fundamental axis of the coordinate system, it may insert fewer features into the hash table.
Their approach, a two-stage triplet-based indexing strategy, is based on the triangle that triplets of
features make. The triangle's angles serve as the features. These features are taken from database
models using Speeded-Up Robust Features (SURF), which allows for quick calculation and the
production of lower dimensional features. Prior to taking a rectangle window of these found key
points, salient points are first determined by employing a Hessian matrix to find key points.

The indexing and searching are phases of the triplet-based indexing approach. Following the
extraction of features by SURF, the indexing step performs principal component analysis
transformation, triplet construction, and hash table building. To make each model in the database
invariant to translation, rotation, and scaling, principal component is employed. The retrieved
features are likewise translated from their original positions when the model image is translated.
Then, using mean centering, each characteristic of every model image in the database is translated
to a different image such that the mean of the translated image is zero.

Mean centering may be calculated by:

1

j_”=—=2f’;1fi,fromfi (10)

Si=Xt (i = N = OF (11)

From the list above, m stands for the model's features, f for its mean value of the features of model
M, and S; for its scatter matrix.

Following transformation, the major components are then found and calculated using the
eigenvalues as in equation (4). The major axes of the coordinate system are formed by rotating the
principal components. Each feature takes up a distinct bin in the hash table once the normalized
features are multiplied by a scaling factor. A hash table's position is assigned to each triangle in a
model image. The coordinates are provided in equation (12).

pl = (Ocmin, (‘xmax,_ocA) (12)
Where « is the angle of a triangle produced by triplet feature points and pi is the pth position of

the features in the hash table.
As in equation (13), the triangle is added to the hash table one at a time.

H(p;) = H(p;) U (M;q, D) (13)
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Where M;zand D are the model identity and descriptor vector connected to the triangle's greatest
angle, respectively.

The triangles in the model image that do not resemble the triangles in the query are filtered out
during the searching phase. In order to access the correct bin, features are retrieved from an image,
triangles are generated between triplets with the new coordinate, and these angles are then mapped
into the hash. Only triangles whose distance is under a threshold are chosen. The Euclidean
distance between the feature descriptor of a query triangle and all the triangles found in the bin is
calculated. The remaining query's triangle is subjected to this procedure, and the results are then
compiled into the candidate set. The candidate set's occurrences of the model identity are then
voted on to determine the top matches.

The triplets are well distributed, as practically every bin occupies an equal amount of triplets,
according to experimental results of the suggested approach when compared with the existing
techniques in terms of index distribution, which results in quicker indexing and reaction time.
Although the plan is effective in terms of speed, it is unable to take data from many sources.

For effective retrieval of skewed geographical data, [70] developed a unique key design based on
R+-trees. On this study; indexing spatial data management in the cloud, the authors developed a
new indexing method (KR+-index) based on R+-trees that supports effective multi-attribute
accesses for skewed data on cloud data management systems (CDMS). By dynamically dividing
and merging nodes, the R+-tree creates a balancing search tree and may limit the quantity of items
in each node by adjusting the M and m. Key names are created for R+-tree leaves. To split the data,
the R+-tree is employed, and the rectangles in the tree's leaf nodes are used as grids.

The objects record for each rectangle, let's say R1, R2, and R3, is kept, and the data required in the
scheme are created by the R+-tree with specified M, m. A new data point is added into a node by
first looping up the key of the point that corresponds to the model to which the point belongs. To
determine if a split would be necessary, the node's current size is checked. The node is divided into
two new sub-nodes and the old node is removed when the number of points reached the appropriate
limit. The original node's points will be distributed among the new sub-nodes. The method
considers cloud data management to effectively extract skewed and spatia data.

The method is effective for accessing data and offers support for both range and nearest-neighbor
(NN) searches, but it lacks a mechanism for quick responses to queries regardless of the size of the
query and the data being accessed. The parameters of the technique are the order O, the bottom and
upper boundaries of the rectangle (M, m). The experimental finding demonstrates that, for skewed
data, the new indexing approach, KR+-index, beats the most recent index method, MD-HBase. The
system requires a significant amount of memory and lacks secrecy. Because computing requires a
lot of processing time, the cost is significant.

[46] suggested a method for keeping track of K-nearest neighbor requests over moving objects.
Grid indices are used by the authors to create algorithms for both object’s indexing and querying.
Additionally, a cost model was created. Continuous monitoring of several K-nearest neighbor (k-
NN) queries over moving objects was the major emphasis. In order to achieve high throughput, a
two dimensional region of interest is taken into account in this study. Each item in this research has
a unique identification p(t) € P(t), and exists in the unit square [0, 1]2. The plane is divided into
regular grid cells of equal size, and the coordinates of the objects p(t) are indicated as
(p(t)x,p(t)y ). After that, the items are scanned. To make it possible to create their index, the
scanned items are mapped into the correct cells. (p(t’) € P(t’) is used to keep the object's growing
list for each cell at time t. Equation (14) illustrates how to build mobility and indexing, and
equation (15) shows how to calculate the incremental query response time when mobility and cell
size are present.

L1 (vaax)2 if 0 < Vmax

Umax Umax\ -
T (1— T)lf0'>vmax

(14)
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tquery = (bo + bl[l" prZ‘UZNP) . NQ, (15)
. 2
T = (C1 82 4 €2 (e + 6)2Np ) No. (16)

Where v,,,, denotes the maximum mobility, (I..;;)denotes the neighbors' distances from the
bounding rectangles (width and height), Np denotes the length of the array, tgy.r, denotes the
query time, o denotes the size of the cell, N, denotes the number of queries, N,, denotes the
number of objects, T denotes the overall time, and i denotes the deviation.

Equation (16) above demonstrates how query indexing may be utilized to respond to requests by
obtaining a bootstrap from k-NNs queries. The scheme is effective in terms of scalability, memory
usage, and speed, but it does not support time parameterised queries due to their focus on
continuous queries for monitoring rather than a general spatial-temporal indexing method.
Experimental results show that index construction requires a linear time and query answering time
is nearly constant.

[47] suggest an innovative method for indexing moving objects. The suggested main-memory
approach uses frequent snapshots to move items into the index, which supports time-parameterized
(predictive) searches and is simultaneously space-, query-, update-, and multi-CPU efficient.

Fundamentally, MOVIES is similar to the method used by a cinematographer: since no camera can
record continually changing data in a single frame, a cinematographer must take a sequence of
static images at a specific frame rate. An illusion of continuous movement may be produced as
long as the frame rate is higher than the inertia of the human eye (i.e., at least 24 frames per
second). We take the exact same course of action. By taking into account a dataset of, let's say, N
moving objects in a 2-dimensional region of interest, the authors were able to create a short-lived
index picture that is only stored in the main memory for a brief amount of time. The domain of the
scheme is |X|*|Y], where |X| stands for the number of different places in the horizontal (or vertical)
dimensions. For all incoming queries, the algorithm relies on read-only indexes and index frames.
Data and query results are predicted using a timestamp-consistent predictive index and timestamp-
consistent query processing. The system is effective, according to experimental results, but it is less
effective at dealing with more widespread issues with indexing data streams. Scalability and
staleness must be balanced. When processing a huge number of data and changes, the approach is
ineffective.

[48] suggests the use of a composite tree index method for the run-time correlation engine to
facilitate efficient event indexing and searching. The ability of compact tree data structures is used
by the authors so that they may share a single set of event indices for all of the leaf nodes on the B-
tree. Additionally, they make advantage of the search index data structure to effectively process
timestamp-based searches. Events are promptly stored to the file storage utilizing a container
paradigm as they enter the system. A list of keywords is created from the message's extracted
content. To index each extracted keyword, a node is created or returned by the tree structure. If an
event is received using the RTCE event data format, the engine creates an event object, and the
data for the index, which corresponds to the event index. Additionally, the tree structure acts as a
lexicon for storing each term included in stream events, after which a reference is made. The root
node, the transition node, and the leaf node make up the tree structure of the scheme. The query
engine scans the list of requested keywords to execute a query. This approach uses a composite
tree-based indexing strategy that is effective in terms of quick response times. The Java Garbage
Collector (JGC) must repeatedly stop in order to free up the heap for the incoming events, which
results in a reduction in performance, according to experimental data. As a result, the indexing
performance is not justifiable.

[49] created an epic system as an integrated framework to accommodate high concurrent OLTP
queries and huge scale data analysis activities. Different types of indexes were created and
incorporated into the system to enable effective query processing for a range of applications. Run-
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time Content Accessible Network (CAN) has incorporated an R-tree based indexing technique with
a CAN-based routing protocol (RT-CAN). The multi-dimensional data and query processing in a
cloud system is called RT-CAN. To accomplish efficient indexing, an integrated CAN-based
routing protocol and an R-tree-based indexing system were utilized. To retain index items in d-
dimensional data, the author utilizes d-dimensional C2. An R-tree node is inserted into a CAN node
using a mapping function. Then, R-tree nodes were indexed for use in indexing operations, and at
the same time, the indexes for each subsequent R-tree node were published. In the epic system, a
CAN node that has the key receives a query, processes it, searches its buffered global index, and
returns the user-retrievable result. Equation (17) and (18) calculates the cost model and the
anticipated processing time for KNN queries.

VT
C(S) = Lnes(crp(n, Q) + Cy(n, L)) (18)

D, = zx—“r(gﬂ) (1- ll— d\/%) 17)

Where d is the dimensionality of RT-CAN, K are the data items, S are the nodes of tree, N are the
estimated numbers of data in the whole space, T'(x+1) = xI'(x), I'(1) = 1 and T'( %) = % and cpp are
the false positive and maintenance costs, respectively, and n stands for the node.

The epiC system lacks scalability in terms of increased dimensionality [75], despite being effective
at managing huge users and massive amounts of data [76-78]. The overlapping of d-dimensional
space and range queries with a large number of index items, which results in a high communication
cost, are the main causes of throughput declines as dimensionality increases.

[23] provided a quick image search for metrics that were learnt. They discovered a Mahalanobis
distance function that effectively encapsulates the underlying connection of the image. The authors
encode the learnt metric parameterization into randomised locality-sensitivity hash functions as in
equations (19, 20, 21, 22) to enable sub-linear time similarity search under the taught metrics.

da(xi,%7) = (x; — x)TA(x; — x7), (19)
Apyr = Ar + BeAe(xie — x5¢) (i — %j0)T Ap, (20)
Kevr = Ke + BeKe(eie — ej)(eir — €j0)" Ky, (21)
Pr[h(x) = h(y)] = sim(x,y), (22)

Where t is an iteration, 5, is a projection parameter, e;; and e;; are vectors to the it — th and jt —
th standard basis vectors, respectively, and d, is the distance between the matrix x; and x;.
Equation (22)'s probability of collision and similarity function is denoted by Pr, sim(x,y). The
system is unreliable and uses an excessive amount of memory and processing time.

[34] provided many indexing methods, including content-based image indexing, content-based
multimedia indexing, audio indexing, and video indexing. These methods are together referred to
as content-based indexing methodology. The indexing strategy aims to identify the targets speakers
in movie dialogs and extract semantically significant movie events. The authors employed a
searchable index of the speech material present in digital audio files created using an online audio
indexing system. The system looks for the borders of acoustically homogenous segments as data is
received and categorizes it into speech, music, and mixing classes. The speech fragments are
grouped together to offer consistent speaker identification. The speech and mixing portions were
transformed into text format using the ASR technique. After that, the output of the words is time-
stamped in XML along with other immediate data. The writers only discuss the various indexing
methods and concentrate on the usage of online audio indexing systems. The system cannot handle
complexity, diversity, or truth.
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[50] By using a dynamic threshold to enhance cluster identification of latent semantic indexing,
[50] suggest a method that is based on Latent Semantic Indexing (LSI) as part of the strategy. Input
selection, pre-processing and indexing, latent semantic indexing, calculating similarity and
grouping, and visualization are all included. The input is indexed using the individual words once
the input variables have been specified and pre-processed. The latent semantic index is then used to
process the pre-processed and index-generated matrix. The approach's text is represented as a term-
by-context matrix, or M, which is then broken down using the singular value decomposition
method. The heuristic in [72] is utilized to determine the number of dimensions as a result of the
size of the document used in equation (23).

heu = (m x n)%2 (23)

Where m and n, respectively, stand for the number of contexts and terms. The linked context is
clustered using the similarity metric. The distance function is used in R, a programming language
designed for data analysis and visualization, to construct these clustered linked contexts. The
authors employed dynamic hybrid cut [79], which is renowned for considering the dendrogram's
form and building the clusters from the bottom up. According to experimental findings, the
dynamic hybrid cutting method significantly increases the ability of LSI to identify issues in source
code. Because the dynamic hybrid cutting approach is so good at cutting asymmetric dendrograms,
the findings beat the fixed height threshold cutting technique [73-74]. The scheme's flaw is that it
only uses one expert per case study, allowing for the use of a priori information that can be
exploited to affect performance outcomes.

[51] designed the IG system for graph queries, which is a quick graph query processing with a
cheap index. The method allows for quick indexing and effective query processing. The authors
built their index using a quick approach for extracting network commonalities based on basic graph
statistics. All of the database's data graphs were combined into a single graph and closely adhered
to the frequency of the edges in order to achieve high throughput. The integrated graphs (IG) are a
small representation of a collection of graphs that have a number of desirable properties and are so
inexpensive to build that subgraph isomorphism testing is not necessary. They are also simple to
maintain in terms of update database. Query processing in this study comprises query integration,
direct incorporation of replies, and project-database filtering. The query response time is as given
in equation (24) below:

Tresponse = (Tsearch + Zq EQ(|Cq| * TI/O + |Cq| * verify) (24)

Where Tyerify is the time needed to verify the candidates, T /Ois the disk input and output for

obtaining each candidate graph, and Ts..cniS the index search time. According to experimental
findings, index creation is quicker, uses less memory, and processes queries more efficiently than
the state-of-the-art indexes utilized in this study.

To address the tolerant retrieval problem in the shortest possible query time, [81] introduced the
compressed permuterm index. The construction of the string, computing L = bwt(Sp), and
creating the compressed data structure to facilitate RANK queries over the string L are the three
processes that make up the compressed permanent index. The jump2end function, created by the
authors, may change backward processes and handle PREFIXSUFIX queries. To discover the rows
that are prefixed, the search method BackPerm_search scans characters backward. When the
BackPerm_search (a$g) function is used, the number of dictionary strings is returned as last —
first + 1. Applying Display_string will return these strings. The BackPerm_search
($P$)function does the same thing, returning the value of First if First < last, otherwise concluding
P A D. Select activates the Display string (i) provided that 1 < i < m. According to experimental
findings, the plan is effective at addressing issues with tolerant retrieval.
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4. Datasets used in indexing

It is extremely challenging to execute real-time indexing of this complicated information or data, or
big data, in cloud computing because of the complex nature of data flowing from many sources as a
result of the availability of mobile devices and broad band internet. VVolume, velocity, and variety
are the elements that make up data. Value [53] and veracity [54] are factors that deal with the
utility of data for decision-making, and the degree of data trustworthiness must also be met. The
indexing system must be effective in indexing big data and meet requirements for volume, velocity,
variety, veracity, variability, value, and complexity. Simulations are performed to verify the
effectiveness of the indexing scheme with regard to search accuracy. The simulations don't take
place in real time. For non-artificial intelligence (NAI) indexing approaches, the grounds for testing
indexing accuracy included charts, images, geographic data, and text. Using a multimedia dataset,
the artificial intelligence- and collaborative artificial intelligence-based indexing strategies are
assessed. The effectiveness of indexing techniques based on artificial intelligence is also tested
using text-based and annotated datasets. Researchers tested the viability and efficacy of the existing
indexing techniques using various datasets. Data identification is facilitated by the platforms used
for the datasets. For instance, the platform where the graph data will be used can help identify a
graph dataset. [55] put a lot of effort into developing various indexing techniques on the iGraph
graph dataset structure. Therefore, the implementation platform will aid users in understanding the
type of data available in the dataset. Although there are other ways to gather data, it is not
discussed in this section. In [56], datasets from the US Forest Service website, Flickr, and the
Wikipedia database, respectively, were utilized.

Additionally, two multimedia datasets that were gathered and made publicly accessible from
prominent Wikipedia articles are incorporated in [57]. The NUS-WIDE database was used to
acquire the second dataset, which is the Flickr data. 2866 image-text pairings from Wikipedia were
retrieved in order to assess the efficacy of their technique. Of these, 2173 served as the training set,
while 697 served as the test dataset. 186577 image-text pairings total, of which 185577 are utilized
as training data and the remaining 1000 pairs as test datasets, are present in the NUS-WIDE
database.

5. Categorization Methodology

For the purposes of this review, indexing methods suggested by reliable researchers that were made
available from highly regarded publishing journals as evidenced by their impact factor were
employed. The Journal Citation Report (JCR) determines the rankings. In this study, the
effectiveness of an indexing strategy was evaluated in terms of its ability to address big data
requirements in cloud computing while also enhancing high recall rates. Additionally, this will help
highly esteemed researchers of the highest caliber assess potential offered solutions in order to
create effective indexing strategies that meet the needs of big data for big data indexing in cloud
computing environments. In light of the performance advantage, the relevance of the methodology
utilized in developing an efficient indexing system is examined. Big data factors are used to
validate the performance of proposed indexing systems and compare them to other current
schemes. One of the most crucial big data factors is volume, which is one of the characteristics that
define big data. The 6Vs and C, also referred to as velocity, variety, veracity, value, variability, and
complexity, are additional considerations. Some indexing methods just meet the volume
requirement for data while others also meet the velocity requirement, which refers to the rate or
pace at which new data are generated or current data are transformed.

The ability of bit-scalable deep hashing codes to maintain discriminating powers with short codes
is well established. [58] suggests using a deep convolutional neural network to build a supervised
learning framework for producing bit-scalable and compact hash codes from raw photos. The use
of compact and bit-scalable hashing algorithms in combination with neural networks, according to
the scientists, produces outstanding results in similarity searches for picture and person re-
identification in surveillance. Additionally, the created codes preserve the ability to discriminate
when employing short-length codes. It outperforms previous approaches like DSRH with a
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significantly increase of 1.67% because of the integrated representation of features and hash
algorithms.

Table 1 is an overview of research journals reviewed in this work, along with an explanation of
their features and the drawbacks of the current indexing techniques. The table provides a list of the
various indexing methods that were utilized to categorize the data in this study. It has six vertical
columns that list the author's name, the work’s title, the technique utilized, a description of the
method, the connected problem and its current solution, and the suggested solution. The table also
includes features as optimising search time.

Table 1. State-of-the-art techniques
Author Title of the  Method Description of the method F_’roblem associated Proposed solution
work used used with the method used
There is high Deign an algorithm
The image’s underlying COMputational cost and that  would  be
Fast image relationship are captured. The not suitable for veracity. ~ suitable for veracity.
[23] search for Hashing learned metric Data retrieval is very Use of geometric
learned parameterisation are encoded slow. There is high hashing of SURF
metrics into  randomised  locality- memory consumption. key points to
sensitivity hash function. improve the speed of
recognition.
Minimal amount of supervise It cannot handle large Design an algorithm
information is used for high spectrum of information that can minimise
quality hashing. Supervised such as  duplicate the minimum
. information are similar and document detection. information criterion
[32] Sﬁfsehri\:]';e Hashing dissimilar data__ pairs. The ar_1d the hamming
- authors utilised the distance.
with kernels .
equivalence between
optimising the code inner
products and the hamming
distances.
Hypersphere-based  hashing SHD does not provides There should be a
function is use to map more significant improvement similarity
spatial coherent data points in terms of accuracy embedding term
Spherical into a binary hash code with a with the generalised incorporated into the
hashing: new binary code distance spherical hashing. independent hashing
Binary code . function the spherical functions to improve
. Spherical - . .
[34] embe_ddmg hashing Hamming distance suitable to accuracy.
with " the hypersphere-based coding
hypersphere scheme.
s The binary code embedding
function H(x) maps data in
RP points into the binary hash
code.
Compact The scheme cannot Employ the use of
hashing handle large scale data hypersphere to
with  joint The search time is analyse and  set. The use of one hash  reduce
optimization model ~ to ease  the table degrade  computational
[35] of search Compact minimisation of the search performance in terms of complexity by
accuracy hashing  time. The search time is recall. defini tiaht
and time minimised by balancing the efining 'g_ er
hash bucket. closed regions
among the data
points.
Compact The sparse reconstructive The computational The hash functions
structure Special  relationship of data to learn ~complexity involve in should be design
hashingvia  structure- compact hash codes. The the objective function, using the
[47] sparse and based information provided by each the map matrix, sparse gijscriminative
similarity hashing  bit is utilised to obtain desired Weight matrix degrade  gimijarity
preserving (SSBH) properties of hash codes. The Performance. information among
embedding. information theoretic the data points to
82

http://dx.doi.org/10.36596/jcse.v3i2.548



Journal of Computer Science an Engineering (JCSE)

vol. 3, No. 2, August 2022,

pp. 71-94

e-ISSN 2721-0251

Author Title of the  Method Description of the method F_’roblem associated Proposed solution
work used used with the method used
constraint is incorporated into reduce
the relaxed empirical fitness as computational cost.
a regularising term to obtain
the objective function
Two hash codes of different There is long response The hash function
length are used for stored time and additional designed should be
images in the database and the computational cost for pased on  the
queries. The compact hash calculating the  distribution of data
code is used for the stored Hamming distance of o effective short
) images in the database to the compact _hash code compact hash codes.
Asymmetric reduce storage cost while the of the stored image and
cyclical long hash code is used for the long hash code of the
hashing for Asymmetr . . query. There is large
[49] large scale ic cyc_hcal queries for _ see_irchlng storage cost due to the
image hashing.  accuracy. To retrieve images e of long codes.
retrieval. from _ the_ database, the
Hamming distance of the long
hash code is computed for the
query and the cyclical
concatenation of the compact
hash code of the stored images
for better precision-recall rate.
Semantically meaningful ~ The focus was on online  Manifold learning
movie events are extracted audio indexing system.
from movies. An online audio The system is not
indexing system is used to suitable for veracity,
Different Content- create a searchable index variety and complexity.
[52] Indexing Based speech content contained in
Techniques Indexing  digital audio files. Boundaries
of the acoustically segment of
data are searched and the data
is then classified as speech,
music or a mixture.
The method is Use SURF
Local descriptors and relative redundant in that the extraction technique
spatial configuration are used features are mapped to extract feature
for identity matching. SIFT is into the hash table points from images.
used to extract local features multiple times. The The feature points
from  noise  independent feature points are not should be pre-
annular iris image to detect normalised. There is processed and
Robust iris key points. Geometry hashing high memory normalised. DOG
indexing is then applied to the detected consumption and should be used to
schgme Geomgtric key points for indexing ir_l the computational cost. detect interest
[61] using Hash_lng database. In _ the retrle_val points. Data number
geometrlc (point phase, geometrlc hgsh location should be reduced in
hashing of based of query image is used to the hash bins to
SIFT key access the exact bin of the .
points. table and a vote is cast and Improve the
images with certain number of performance of
votes are considered. Key recognition.
point descriptors of possible We employ a
candidates is matched with the technique to evenly
query iris to get the potential distribute features
match. into hash table
(DSH).
B-tree is used as a building The scheme is Graph partitioning
T K block to design a SEB-tree to impractical when and B+-tree (hybrld
op- support  temporal ranking dealing with unknown B-tree).
[64] 12?:6‘;2'” B —tree queries. SEB-tree answer a behaviour of online data
dgta ‘_rop-k query for any Fime stream and it is also
instance t in the optimal faced with high

number of 1/0s in expectation.

computational cost. It
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Auth Title of the  Method Description of the method Problem associated Proposed solution
uthor work used used with the method used
Piecewise linear functions are suffer from the curse of
break into segments and uses  dimensionality and
the upper envelop U(S) which  cannot deal with large-
segment visible from +o0 ¢ the memory
along y-axis. A seriesof I +1 oo oine
independent  samples  are
created and the query
algorithm is designed.
The T-PARINET is composed Consumes vast Fuzzy
of network model, query computing  resources
model, and the data model. when carrying out
The network model defined gpline data  stream
for the T-PARINET uses indexing. It  cannot
Indexing in Graph represelrgtatl(k))n fgom the rozd handle large-scale data
network partitionin networ _ Dase on the base.
[65] ] geometric view and topology
trajectory g and B+- . . :
flows. tree view. The geometric view
captures approximate
geographic location of the
road network while they
topology view uses the graph
in order to represent the road
sections and intersections.
Short-lived index images are The scheme could not Cache aware B+-tree
constructed and kept in the handle general as  read-optimised
main memory for a very short  problems of indexing structures.
MOVIES: time. The predictive and non-  gata streams. There is
Indexing predictive MOVIES  {rade-off between
moving algorithms. are designed_ to scalability and
[66] obJect§ by Fuzzy support  time pa_rameterlsed staleness. The scheme is
shooting predictive queries. The . . -
index MOVIES indexing algorithm inefficient in handling
images. which is based on index 1arge volume of data
frames uses  frE-quent and updates.
Snapshots to index moving
objects.
Small records are inserted into There is no guarantee Authenticated tree-
the outsourced data. that query  based structures.
. Randomised and deterministic  guthentication is
Integrity .
auditing of Query_ {ipproaches for generating the  correct.
[67] Authentic  inserted records are both
outsourced . - . .
data ation. stud_led. '_I'o effectively audit
the integrity of the system, the
inserted records in the query
result are analysed.
Redundancy. The Employ dynamic
scheme  does not geometric  hashing
support indexing of a technique to support
It uses the modified geometric  database that is dynamic  insertion, deletion of
An efficient hashing. SURF operators are (increase and decrease feature points, data
indexing used to extract control points jn  sjze) to enable points, data and
scheme for . from the face database. A pre-  ygification.  Variant updating the  bin
face MOd'f'eq processing method _meanare ot uniformly table. Use prime
[68] database Geometric  centering, principal distributed into the hash hash  function  to
using Hashing ~ component, normalisation and Istributed L
modified rotation are used to make the SPaCE: High memory Maximise t_he
geometric control points invariant to ¢St distance of keys with
hashing. translation,  rotation  and collision and also to
scaling. ensure uniform
distribution of
variant into the hash
space (bin).
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Author Title of the  Method Description of the method Problem associated Proposed solution
work used used with the method used

The scheme is not We use compact

suitable for variety and hash codes to reduce

does  not  support memory cost. Use

modification of the dynamic geometric

Use of database. There is high hashing technique to

. Geometric features of i ificati
geometric -0t search time and  support modification
features of _ principal components are used  nemqry cost. of data.  There

rincipal Triplet-  to insert fewer features into should be minimal
[69] P based the hash table. SURF is used
components hashi f p h number of data
for indexing ashing  to extract features from the points in the hash
2 biometric database by using Hessian .
matrix to detect key points. . table to improve the
database. speed of recognition.
The  number  of
feature points for
each image in hash
bins should be equal.
A key names for leaves on an  There is high  There should be an
_ R-tree are designed. R-tree is  consumption of space efficient scheme
Indexing used to divide the data and the  and high response time suitable for velocity
spatial data rectangle in the leave nodes for |arge dataset. The and volume
[70] in cloud Re-tree are treatfad as dypamlc gr_lds. search performance
data Data points are msertgd into drops with data of high
managemen the node. Range query is used . S
.~ dimensionality.
t to get the geographic
coordinates of the overlapped
grids.
It does not support time  Use frE-quent
o parameterised  queries  Snapshots to support
o Grid indices are used for que to their focus on item parameterised
Monitoring algorithm formulation to index  ¢ontinyous queries for  (predictive) queries.
k-NNs objects and queries. Objects S
. : monitoring in contrast
[71] queries over Fuzzy are scanned and mapped into to a oeneral spatial-
moving corresponding cells and their t g: . é) -
objects. respective index are then empora Indexing
constructed. meth_od. _ Frgquent
creation of index image
consumes time.

High There is high  Hybrid indexing
volumes of The solution is built based on  consumption of classifier that
event stream the composite index data computing  resources considers dynamic

Indexing o osip  Structure which shares asingle  pecause  of  many graph partitioning,
[72] and efficient o (B- list of event indices for all the  heration involved. The Graph partitioning

multi- tree) leave n_odes on the B-tree.  scheme suffers from the and B-+-tree (hybrid
keyword Search index data structure is
. S curse of data B-tree).

searching used to efficiently process dimensionali

for cloud timestamp-base queries. ensionality.

monitoring.

The Compute (First’, Last’) = High memory  Cross-indexing  of
compressed BackPerm search(y$p3) consumption. binary SIFT codes.
permuterm » Compute [First”, Last”’] =

index BackPerm search(g )

Permuter  « For each r € [First’, Last’]
[81] .
mindex  repeatedly apply Back step
until it finds a row which
either belongs to [First”,
Last’’] or to [1,m] (i.e. starts
with $).
Indexing R—tree  Indexes are designed and AN increase in  Compact R-tree to
82] multi- and integrated. The R-tree based dimensionality result to utilised storage
dimensional content indexing scheme and the decreases in throughput
data in a accessibili  content accessibility network due largely to
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Author Title of the  Method Description of the method Problem associated Proposed solution

work used used with the method used
cloud ty network based routing protocol are overlapping of d-
system (CAN) then integrated as RT-CAN. dimensional space and

R-tree node are then inserted range query with large
to a CAN node. The R-tree  nymper of index items
nodes are then indexed. A \yhich leads to high
query is directed to a CAN
node that contains the key for
query processing.

communication cost.

6. Taxonomy of indexing techniques

This study's indexing methods are grouped and/or classified to provide a clear understanding. This
is known as taxonomy. Non-artificial intelligent (NAI), artificial intelligent (Al), and Collaborative
Artificial Intelligent (CAIl) are the three categories on which the taxonomy of indexing approaches
is built. These indexing systems are further divided into components for categorization. Non-
artificial intelligence, for instance, is further broken down into components like hashing, graphs,
and bitmaps. Machine learning (ML), soft computing (SC), as well as Knowledge Representation
and Reasoning (KRR), are divisions of artificial intelligence. The sub-division of collaborative
artificial intelligence is Collaborative Machine Learning (CML), collaborative soft computing, and
collaborative support vector machines.

Non-Artificial Intelligent (NAI): The NAI uses indexing methods including bitmap and hashing
[52], as well as tree-based indexing methods like B-tree [59], [19], and R-tree [60-61]. With regard
to indexing creation and query response, this category of indexing strategies takes a simple
approach. Big data may be retrieved from the cloud relatively quickly and effectively using the
indexing techniques included in this group. These indexing strategies fall into a group that is unable
to identify large data's unpredicted behavior in cloud computing. The most frequently accessed
items in a given data collection are used to generate indexes, not the relationships between texts or
the meaning of the data items, as would otherwise be the case.

Artificial Intelligence (Al): Al can recognize the unidentified behavior of massive data, and can
apply rule-based automation for recognized patterns. Rule-based information was used in Al
indexing approaches to increase the effectiveness of huge data retrieval. These indexing methods
fall under a very scientific category. Machine learning, soft computing, knowledge representation,
and reasoning are all categories of artificial intelligence. When compared to NAI approaches, they
are frequently viewed as being less effective since they construct links between data items by
examining the trait or pattern and grouping things with comparable patterns [62]. Latent Semantic
Indexing is another indexing method used by Al [63-66].

Collaborative Artificial Intelligent (CAl): The accuracy and search time shortcomings of the Al
indexing methods are supplemented by the CAl indexing schemes. It uses artificial intelligence as a
foundation to create effective indexing algorithms that outperform Al approaches. The terms
Collaborative Knowledge Representation and Reasoning (CKRR) and Collaborative Machine
Learning (CML) are used to describe CAI methodologies. When it comes to indexing massive data
in a cloud computing context, the CAl and Al behave similarly.

The creation of indexes in NAI indexing methods is based on the objects that are often searched for
in the database. For instance, data retrieval is performed in a sorted manner in tree-based indexing
approaches, meeting the indexing techniques' reputation for their quick recall rate and storage cost
minimization. Data is hashed to increase retrieval precision and decrease memory use. With the
help of the feature fusion based hashing approach [67], it is possible to detect large-scale image
copies in a huge dataset for big data in cloud computing by making use of the relationship between
two feature models. This approach performs effectively in terms of data volume for large data
requirements.

Unknown behavior in massive data is found using Al indexing techniques. The indexing methods
rely on soft computing, knowledge representation and reasoning, and machine learning. An

86
http://dx.doi.org/10.36596/jcse.v3i2.548



Journal of Computer Science an Engineering (JCSE) e-ISSN 2721-0251
vol. 3, No. 2, August 2022, pp. 71-94

unstructured dataset can have patterns between its components according to the indexing technique
known as Latent Semantic Indexing (LSI), which is based on an artificial intelligence indexing
approach. It may build associations between phrases with comparable contexts and extract the
semantic meaning of a dataset. ML is an Al-based indexing technique that involves an iterative
process of pattern observation, mathematical adjustment, and prediction rating [12]. An Al-based
machine learning method is called "manifold learning." [68] suggested a concept of local subspace
indexing for image search that enables quick query selection. The program might incorporate
several learning algorithms to improve recognition performance.

An indexing strategy based on multi-agent or non-multi-agent systems benefits from the CAI
indexing techniques in terms of accuracy and search time. The effectiveness of these strategies also
depends on the collaborative power of the adopted method.

7. Performance Evaluation of hashing techniques based on Mean Average Precision (MAP)

MATLAB implementation that is freely accessible was used to evaluate some techniques reviewed
in this article. The primary assessment metrics for large-scale image retrieval studies are mean
average accuracy and precision-recall. Recall rate is a metric for determining and illustrating search
accuracy. The ratio of accurately recovered images to the total number of images actually retrieved
from a database is known as the recall rate. In this section, five cutting-edge hashing algorithms for
high-dimensional closest neighbor search were evaluated for performance. Among the algorithms
examined are:

DSH: Density sensitive hashing combines the advantages of data-dependent and data-independent
hashing algorithms [80]. It is a semi-supervised based hashing approach. The forecasts are
produced using basic concepts. This method creates projections using chosen principles rather than
completely random selection [80]. It is a development of LSH.

LSH: Locality sensitive hashing is a hashing-based approach that generates projections
independently of the distribution of the data. LSH makes projections at random. The vectors used
to generate the projections are chosen at random from a p-stable distribution. It applies to the
change detection domain and is an unsupervised approach [30]. SHD is a hashing-based approach
that makes use of spherical Hamming distance. KLSH generalizes the Locality Sensitive Hashing
to the Kernel Space [56], Shift-Invariant Kernel Hashing for estimating shift-invariant kernels [40].
The SIKH is based on random feature hashing.

7 Methods

This section looks at the geometric data features' magnitude structure. The image characteristics are
indexed using the results of the quantized hashing. The experiment used a combined strategy that
increases both search accuracy and precision while processing binary hash codes using five cutting-
edge hashing algorithms. To cut down on storage and computational costs as well as to improve the
precision and speed of queries, a dataset including sample data points was indexed. This work
addresses the samples of the data points as x;, x5, x5, ..., Xy, Where X represents the database. X =
{X1, X5, X3, . Xp, ..., Xy} € RE*N represents the data points contained in the database. In this case,
Xis the database and R™(d x N) is the dimensional space of size N. Mapping of these data points to
k-bit binary hash code is carried out by the hash function model in equation (25)

H(x) = {hy (%), .. i ()} € {=1,1}* (25)
Where length of the binary hash code is denoted by k..

A similarity-preserving term was used to improve search accuracy in a dataset. With a constrained
Hamming distance, the similarity preservation term refers to the similarities between the data
points Q(y). Comparative geometric feature points of the two data samples' similarities are
retrieved as Qj;.

Equations (26) or (27) are used to balance the distribution of data points for each bit.
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prlhi(x) =1]= x €X,1<i<t (26)

M
N; =Y N (27)

Where N; is the number of training samples in the i;; bucket and M is the number of buckets. To
achieve independence between two bits giventhat x € X and 1 <i <j <t where i and j are the
ith and jth data points, and t is the threshold, hash functions are design to be independent and the
data points are distributed equally to each hash bucket as in equation (28).

pr[hi() = Liy(x) = 1] = p,[h (@) = 1.0 [y(x) = 1] =5 .5 = (28)

The next stage is to integrate the balanced partitioning sections with the similarity preserving term
to speed up and boost search accuracy at the same time. For search precision and the least amount
of information, we employ the similarity-preserving term Q). The joint optimization component is
accountable for the concurrent optimization of search precision and search time, enabling high
search precision with short search times. To make optimization easier, a linear function is
parameterized and relaxed.

The search accuracy is improved by reducing the Hamming distance between comparable data
pieces. Mathematically, this may be written as in equation (29):

Q) Xi=1, NX+Xj=1, NX (29)

To improve search precision and speed at the same time, balanced partitioning and the similarity
preserving term are coupled.

7.1 Experimental Results

The dataset was subjected to hash functions, which produced hash codes with lengths of 8, 16, 32,
48, 64, and 96 bits. The mean average accuracy for each technique that was tested using the SIFT
1M data sets is shown in Figure 1. As can be observed, the random projection methods perform
poorly when the code length is small while improving as the code length rises in terms of mean
average accuracy. When the code length is low, the learning-based spherical hamming distance
performs quite well in comparison to MAP, but as the code length rises, no discernible
improvement was made. When the code length is short, as seen in Figure 1, the Geo SPEBH
reported a high MAP. The approach fails to effectively maintain the similarity between the binary
codes and the original data points, which results in the behavior of the SHD. With the exception of
the DSH method, the SHD performs better than every other algorithm when the code length is 96
bits. The date-independent based algorithms, on the other hand, perform well with lengthy binary
codes due to their capacity to randomly create their hash table while paying close attention to the
distribution of data points.
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The DSH [71] initially quantified the data by dividing up the points into groups using the k-means
method. To evaluate the accuracy of the provided quantization, sum of square error (SSE), which is
the same as distortion, is expressed as the quantisation result represented as S.

The training and testing times of the approach reduce as the dimension lowers because fewer
projections need to be made at random utilizing the geometric information in the data. Since DSH
includes calculating each projection's entropy in relation to the entire database, it takes longer as
the code length rises. The amount of bits necessary to implement each algorithm (i.e. 16, 32, 64,
and 96 bits) is the storage requirement.

The DSH has three parameters: p, which determines the number of k-means iterations, r, which
determines the number of r-adjacent groups, and, @ which determines the number of groups. The
default settings for 64-bit hash codes are p=3, a =1.5, and r=3. As the k-means iteration count
varies, DSH's performance also changes. It is evident from the data that when the number of
iterations rises, the MAP and the learning time of DSH do as well. An acceptable MAP is obtained
after 3 iterations in k-means. Additionally, DSH's performance varies as the number of groups
represented by a changes. As a result, the group number produced by k-means likewise alters. As
the group size grows, the MAP and the learning time of DSH also increases as a =1.5, which
offers a fair balancing when examining efficiency and accuracy of the scheme. Additionally, DSH
performance varies with the number of r-adjacent groups, thus when r < 5, high performance was
attained.

Because in a d-dimensional space, a near area must be defined by d+1 hyperplanes, d+1
hyperplane are necessary to define a closed area in a hyperplane. DSH continually produces more
and more duplicated, less significant forecasts. DSH's performance suffers due to the redundant
projections, making it difficult to scale with massive databases. For this, an optimized method is
needed to maintain memory cost while balancing the trade-off between search accuracy and search
time.

Additionally, DSH creates additional projections that are utilized to separate two distant groups as
the number of r-adjacent groups rises. Making more and more forecasts becomes redundant and of
less importance. The performance of DSH is negatively impacted by projection redundancy. With
large datasets, DSH struggles to scale and ignores search time as a crucial hashing component.
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Table 2 gives the description of the performance of each hashing technique based on mean average
precision. The description in Table 2 helps to assess the effectiveness of algorithms based on MAP
and storage evaluation of hashing approaches.

Table 2. Performance of hashing techniques based on Mean Average Precision
Method of
hashing Authors MAP Storage
techniques
Very Good  Good Average  Very Good Good Average

SHD [34] v v
LSH [30] v v
DSH [80] v v
KLSH [56] v v
SIKH [40] v v

8. Discussion and future directions

In relation to large data in cloud computing, many indexing algorithms have been given and
analyzed to highlight their merits and flaws.

Data Reduction: A proposed square kilometer array telescope now generates millions of terabytes
of data, while petabytes of data are produced by scientific research and modeling results. The
majority of these massive data sets are chaotic or unstructured. These noisy and unstructured data
need to be repaired, well-organized, and formatted simply. The filters used to filter the
experimental and simulation data are designed to prevent the loss of important data. Because of
this, the science of data reduction turns into a murky field that has to be investigated by academics.

Data provenance is implied by the ability to comprehend information and move it through the
analysis pipeline. In order to trace the connection and transport data provenance across data
analysis pipelines, it is preferable that a data system be created.

Data description: Determining the quantity of the stored data and describing the type of data as it is
being saved are crucial. To define and comprehend the stored data for these, it is necessary to
automatically produce accurate metadata. Researchers should thus focus on developing data
systems that can produce metadata and transmit that metadata through data analysis pipelines.

Data Integration: Raw data gathered from sensor devices, student records, health records, x-ray
image data, graph data from mathematical and statistical analysis, photographs, and videos cannot
be successfully analyzed. In order to collect information from the many sources, arrange it, and put
it in a manner that can be analyzed, researchers urgently need to create a strategy.

Data Analysis and Mining: Data mining and analysis are necessary in order to make huge data
relevant for decision-making. Relational databases are only partially capable of doing in-depth
analyses of massive data in cloud computing. Therefore, it is advised that researchers create a
productive big data analysis strategy.

To help users pick the best method for indexing big data in cloud computing, users should take into
account search time, a crucial performance measure in assessing the speed necessary to retrieve
information from a database. Additionally, while constructing and selecting an indexing technique,
the amount of bandwidth needed to move data from source to destination must be taken into
account.
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9. Conclusion

The datasets used, as well as the organization, categorization, and comparison of big data storage,
management, and indexing strategies, were reported in this study. This study also examines the
performance evaluation of indexing strategies based on their categorization. Big data indexing
requirements, including volume, velocity, variety, veracity, value, variability, and complexity, were
the basis for the evaluation. The study's major goal is to analyze these big data indexing needs and
define existing approaches in order to inform famous researchers about the fundamentals that will
serve as a framework for developing optimized indexing strategies for specific platforms to support
the veracity of big data. The report addressed issues with the approaches already in use and made
suggestions on how to fix them (Table 1). The taxonomy includes NAI, Al, and CAI as the
indexing methods that are currently available. Future research directions are presented in the
debate. In order to assess the effectiveness of algorithms based on MAP, Precision-Recall, and
storage, evaluation of hashing approaches was done.
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