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In order to efficiently retrieve information from highly huge and complicated 

datasets with dispersed storage in cloud computing, indexing methods are 

continually used on big data. Big data has grown quickly due to the 

accessibility of internet connection, mobile devices like smartphones and 

tablets, body-sensor devices, and cloud applications. Big data indexing has a 

variety of problems as a result of the expansion of big data, which is seen in 

the healthcare industry, manufacturing, sciences, commerce, social networks, 

and agriculture. Due to their high storage and processing requirements, 

current indexing approaches fall short of meeting the needs of large data in 

cloud computing. To fulfil the indexing requirements for large data, an 

effective index strategy is necessary. This paper presents the state-of-the-art 

indexing techniques for big data currently being proposed, identifies the 

problems these techniques and big data are currently facing, and outlines some 

future directions for research on big data indexing in cloud computing. It also 

compares the performance taxonomy of these techniques based on mean 
average precision and precision-recall rate. 
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1. Introduction 

A web-based program called cloud computing offers a shared pool of resources. Mobile devices, 

like smartphones and tablets, may now be used for a wide range of various purposes thanks to 

advancements in mobile technology [1]. The accessibility of the internet, through the use of widely 

available broadband Internet access [2], in combination with these portable (mobile) devices, led to 

the simple collection of digital information in terms of structured and unstructured data [3], which 

in turn had contributed to the availability of large volumes of data known as big data. 

The massive volume of data created each day has outgrown data processing systems like databases 

and warehouses. Modern technologies are desperately required to handle this varied volume of data 

properly. Big data analysis in the cloud requires effective technology or methodologies. Big data 

indexing in cloud computing aims to provide effective information retrieval from enormous 

datasets as well as to enhance capacity and capability at runtime without investing in new 

equipment, purchasing new licenses for software, or hiring new personnel. Through the internet, 

cloud computing enables consumers to access cloud services on-the-fly and pay as they go [4]. 

Hardware as a Service (HaaS), Software as a Service (SaaS), Platform as a Service (PaaS), 

Communication as a Service (CaaS), Infrastructure as a Service (IaaS), Data storage as a Service 

(DaaS), Security as a Service (SecaaS), and Business as a Service (BaaS) are among these services. 

Data storage as a Service is utilized for the indexing of huge data on the cloud. 

Science research has been significantly altered and affected by big data. Astronomers now utilize 

the Sloan digital sky survey as a collection of tools and data base [5]. The majority of an 
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astronomer's work in the field of astronomy used to be taking images of the sky, but now that those 

photos have been catalogued in a database, other astronomers may utilize the objects from the 

catalogued photos. Data from company purchasing transactions is effectively kept on the cloud. 

Databases are built so that other biologists and scientists may use the generated biological and 

scientific data, and biological data and experimental data are saved in a public storage facility. 

Today, it is highly challenging to gain access to a very big database where information on a 

patient's diagnosed ailment may be utilized to track the development of his health. These data 

might be utilized to develop effective and efficient healthcare practices, starting with diagnosis, 

prescription, patient monitoring, suggestion, referral, and emergency cases. The growing paradigm 

of mobile devices that enable cloud-based continuous patient monitoring in their homes through the 

use of information technology is a satisfying approach to significantly reduce costs. In order for the 

information retrieved to be utilised by the analysis method, the generated unstructured data must be 

structuralized [6]. 

Similar to how it has an impact on decision-making, big data has an impact on urban planning 

(through the fusion of high fidelity geographic data), intelligent transportation systems (through 

analysis visualisation of live and detailed road network system data), environmental modeling 

(through ubiquitous sensor networks collecting data), energy conservation (through revealing 

patterns of use), and smart materials (through new material genome initiatives) [5]. Big data 

processing became incredibly challenging, making a highly result-oriented method ideal to 

maximize the speed of data query processing. For this, effective access to huge data in the cloud 

requires optimized indexing strategies. Big data is a term used to describe a graph dataset that is 

many terabytes in size and cannot be handled by DBMSs. Such several graph mining algorithms 

have been proposed [7]. 

Researchers have, however, suggested several indexing methods with a focus on huge data in cloud 

computing. Similarity searches; Approximate Nearest Neighbor (ANN) indexing approaches have 

been an area of interest for study and tree-based algorithms [8-11] have recently been used for 

indexing in order to efficiently retrieve huge data on the cloud. [12] suggested R-tree-based 

indexing as a way to index multi-dimensional data on the cloud. An indexing technique called 

distributed B-tree allows for high concurrency reading operations while also enabling consistent 

and concurrent updating [13-14]. In a biometric system, databases are recognized so that a more 

effective indexing strategy can increase throughput by reducing the search space for query images. 

The majority of the time, nearest neighbor classifiers are used for form matching and image 

recognition [15]. KD-tree [16] is a multi-dimensional indexing system that was presented for 

finding the best matches with less time spent. Trajectory indexing systems have been intensively 

researched for extracting knowledge from trajectory data [17–18], creating efficient indexing 

structures [19–20], managing uncertainty, and processing trajectory queries [21–22]. Hash-based 

indexing techniques are renowned for their efficiency in search and similarity computation as well 

as their effectiveness in application areas like large-scale vision problems, such as image retrieval 

[23–24], image search [25], object recognition [26], local descriptor compressing [27], fast 

multimedia search [28], and image matching [29]. While the 𝑐2 [31] is utilized for preserving index 

items in d-dimensional data, [30] applied approximate similarity search. Many more hashing-based 

indexing approaches [32–50] were presented for effective big data management, storage needs, and 

retrieval. 

Large data analysis should be quicker and cheaper [51], with effective indexing strategies allowing 

for faster indexing of big data findings while yet tolerating high costs. Obtaining a structured 

indexing of the original video material and being familiar with its embedded semantics similarly to 

humans were the goals of content-based image indexing and retrieval, video indexing, and audio 

indexing [52]. 

This paper serves as a menu for choosing indexing approaches, offering scholars a way to 

comprehend and gain insight into the various indexing techniques and the issues they raise. Big 

data requirements in terms of volume, velocity, truthfulness, value, variability, diversity, and 
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complexity must be met through an effective indexing strategy. However, these research sought to 

solve the following problems and provide the following contributions to knowledge. 

 Emphasize the cutting-edge methods currently being utilized for indexing huge data. 

 Identifies related issues with the suggested indexing methods for huge data. 

 Propose solutions to address the shortcomings (inefficiency) of the current big data 

indexing approaches. 

 Identify the difficulties and needs for big data indexing. 

 To describe potential prospects for research into indexing methods for massive data in 

cloud computing. 

 Use Mean Average Precision to gauge how well indexing approaches operate. 

2. Big data indexing requirements and challenges 

For effective indexing of huge data in cloud computing, many indexing strategies are created. 

Different criteria are used to assess how well the established indexing techniques work. The most 

prevalent and fundamental metrics are the indexing technique's speed and accuracy. An indexing 

technique's velocity requirements are its speed, while its veracity requirements are its accuracy. 

Volume, variety, value, variability, and complexity are additional needs. Big data requirements for 

privacy and usability provide a significant problem, but they are outside the purview of this 

research and will be investigated in other publications. These huge data issues are necessary for 

evaluating and contrasting indexing techniques. The following obstacles and needs are listed: 

 Volume: is a term that is frequently used to describe size in numerous contexts. The 

magnitude of large data is a difficulty for effective big data indexing and management. 

Currently, depending on the application area where big data is employed, data are 

continually growing from terabytes to zettabytes of dataset. Big data volume increase 

mostly in the field of research as new discoveries were discovered. Big data cannot be 

measured. Huge amounts of data, or "big data," have also been tremendously influenced by 

the accessibility of the internet and portable electronics. 

 Velocity: Handling the rate at which new data are generated and current data are updated is 

a problem [53]. Due to the widespread use of sensing and mobile devices, enormous 

amounts of data are continuously and often created, and the outdated data may be easily 

updated thanks to the accessibility of internet services, broadband, and portable devices 

like smartphones. The storage system responds to the data when new data is created by 

indexing and storing the updated and newly generated data in the cloud. Data must be 

indexed at an extremely fast rate. The richness of data, which has greatly risen and is 

utilized for communication via social networks, as well as its speed both have a significant 

impact on the telecommunications business. Big data velocity, then, is the pace of data 

collection and the time it takes to process the data after it has been gathered. 

 Veracity: The hallmark of big data veracity is the correctness of the data. It may be quite 

challenging to determine which data is damaged and which is not, as well as if the created 

data came from a trustworthy source and can be believed. A very important component of 

any big data demand is big data truth. 

 Value: The importance of data in terms of decision-making is referred to as big data value. 

Big data should have an impact on potential advantages, business transactions, insight, and 

communication values. 

 Variety: Data are gathered in a variety of forms and models from many sources, including 

databases. The information may come from emails, sensors, mobile devices, social 

networking sites like Facebook and Twitter, web pages, blogs, images, and videos, 

business transactions, RFID readings, and papers from the healthcare and/or aviation 

industries. The difficulty is in organizing the many forms of data into a dataset and 

correlating their meanings. Structured, semi-structured, and unstructured data are the many 

data kinds. Big data variety may be defined as the semantic interpretation, heterogeneity of 

data kind, and heterogeneity of data format. 

 Variability: The rise in mobile device accessibility and affordability, along with the quick 

rise in broadband accessibility and affordability, have significantly increased the use of 
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sensor devices, including body-warn sensors, sensor networks, social networks, and 

information retrieval for e-commerce. As these technologies are used more often, network 

congestion arises, slowing down data downloads and uploads and disrupting the flow of 

large data. 

 Complexity: A feature linked to the complexity of big data is the degree of 

interconnectedness, interdependencies, and very large datasets [54]. 

3. State-of-the-art indexing techniques  

The literature on various indexing algorithms is briefly reviewed in this part, with an emphasis on 

large data in cloud computing. The primary application of the currently available approaches is to 

index large amounts of data in the cloud. 

Data-independent indexing strategies, commonly referred to as randomised hashing methods, are 

categorized as hashing-based indexing schemes [30], [40], [42] and [55–56]. The projections used 

by this class of hashing-based indexing methods are generated at random, and the hash function is 

created using data distribution via data-dependent binary code embedding techniques [57]. 

By minimizing the Hamming distance between two binary codes in the original feature space as the 

code length rises, supervised hash coding using deep neural networks [58] was suggested to 

enhance retrieval accuracy. This leads to the generation of lengthy codes to reach sufficient 

performance. By minimizing the reconstructive error between the cosine similarity calculated by 

the original features and the resultant binary embedding, [59] introduced a unique angular 

reconstructive embedding (ARE) that learns binary hash codes. 

Finding two-dimensional objects represented by discrete points that have undergone an affine 

translation is possible through the use of geometric hashing [60]. A point-based indexing method 

called geometric hashing is utilized to index a biometric database. Geometric hashing uses the base 

pairs of the Speeded-Up Robust Features (SURF) key points as the indexing components. Using 

Scale Invariant Feature Transform (SIFT) to identify key points and a geometric base indexing 

approach to transfer the identified key points into a hash table, [61] suggested a robust iris indexing 

strategy to index iris datasets (Geometric hashing). Two steps comprise geometric hashing; the 

stages of pre-processing and recognition. A hash table is produced during the pre-processing stage. 

Features are taken from pictures or objects and stored in the hash table as key points in a database. 

The Difference of Gaussian (DOG) function, as defined in equations (1) and (2), was employed by 

the authors to identify prospective interest points [62]. 

 

𝐷(𝑥, 𝑦, 𝜎) = 𝐿(𝑥, 𝑦, 𝑘𝜎) − 𝐿(𝑥, 𝑦, 𝜎)           (1) 

 

𝐿(𝑥, 𝑦, 𝜎) = 𝐺(𝑥, 𝑦, 𝜎) ∗ 𝐼(𝑥, 𝑦)               (2) 

 

Where k is the constant multiplicative factor used to change the scale and x,y are the coordinates of 

a pixel in image I, and 𝐿(𝑥, 𝑦, 𝜎)  is determined from equation (2) where 𝐺(𝑥, 𝑦, 𝜎)is the Gaussian 

filter for smoothing the image, and 𝜎 is defined as the width of the filter. A gradient orientation 

histogram is used to locate the key points once each key site is given an orientation. Equations (3) 

and (4) below calculate the magnitude and direction as follows: 

 

𝑚(𝑥, 𝑦) =  √ (𝐿(𝑥 + 1, 𝑦) −  𝐿(𝑥 − 1, 𝑦))2 + (𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦1))2   (3) 

 

θ(x, y) =  tan−1 (
(L(x+1,y)−L(x,y−1))

(L(x+1,y)−L(x−1,y))
)       (4) 

 

𝑃 = 𝑢𝑝𝑥
𝑖 + 𝑣𝑝𝑦

𝑖 + 𝑝𝑜
𝑖          (5)   

In equation (5) above, 𝑃 = [𝑥, 𝑦] is the set of key points to be indexed, and (𝑢, 𝑣) is the position of 

point p (the key point) following similarity transformation. 𝑚(𝑥, 𝑦) and θ(x, y) are the magnitude 

and orientation, respectively [63]. 
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Due to the many insertions of image features that have been extracted into the hash table to 

accommodate every potential rotation and translation, this technique is inefficient because, it leads 

to high computational and memory costs. 

Regarding guiding principles and significant operators capable of mapping linked data with search 

keys, B-tree indexing-based approaches are connected to an audit of multi-dimensional large data. 

One of the characteristics of big data is their ability to manage data in massive volumes of various 

sizes. [64] suggests an effective indexing system for temporal data ranking queries. Top-k searches 

on temporal data are answered in this study in almost linear time, with projected low I/O costs. The 

SEB-Tree was created by the authors using the B-tree. They produced a set of l+1 independent 

samples of the set S, where S is the set of segments shown in equation (6). 

 

𝑙 = [√log (
𝑁

𝐵
) + log (

𝑘𝑚𝑎𝑥

𝐵
)]        (6) 

 

N is the database's number, B is the block size, and k is the query parameter [65-66]. 

Despite being effective, the approach cannot handle live data streams since their behaviors are 

unknown. 

 

In order to enable data owners to freely put data into a database at any moment, integrity auditing 

of outsourced data was recommended [67]. For query authentication, the authors employed a 

probabilistic technique, which is simpler and more flexible to implement. The authors just add a 

few tuples to the external database. The tuples are then authenticated using equation (7) to 

determine if they are genuine or fraudulent. 

 

𝑎ℎ = { ℎ(𝑡𝑖𝑑 ⨁ 𝑎1…⨁𝑎𝑛)
ℎ(𝑡𝑖𝑑 ⨁ 𝑎1…⨁𝑎𝑛)+1

 𝑡 𝑖𝑠 𝑟𝑒𝑎𝑙
𝑡 𝑖𝑠 𝑓𝑎𝑘𝑒

       (7) 

 

where ti is the tth tuple, h is the hashing algorithm, and a is the header column 

 

Because the way these records are formed has a significant influence on the storage performance of 

the scheme, both the randomized and the deterministic ways for creating the inserted tuple are 

explored. Absolute accuracy for query authentication is not guaranteed by the technique, which is 

an issue [64]. 

[68] suggested an effective indexing method for a face database. The new indexing method was 

created by the authors of this work using hashing. The hash table and descriptor vector for model 

recognition were created using the coordinates of the control points. Control points are the 

elements that give an image its distinctive qualities. Utilizing Speeded-Up Robust Characteristics 

(SURF), control point features are retrieved. To make the control points invariant to translation, 

rotation, and scaling, a pre-processing method is utilized. This method comprises mean centering, 

principal component rotation, and normalization. After that, mean centering is used to reduce the 

impact of noise. The mean of all the translated control points is zero once each control point has 

been translated. Utilizing the direction of the control points that stayed constant even when some of 

the points are not accessible, the rotation of the control points-based primary components is 

accomplished. Using the Principal Components Analysis (PCA), this is accomplished. By 

performing a dot product of a point vector with the principal component vector, which gives the 

projection of the point on the principal component, coordinates are rotated with respect to their 

mean such that the first and second principal components are aligned along the x- and y-axis of the 

coordinate system. 

The updated geometric hashing is scale-invariant thanks to normalization. To obtain the normalized 

coordinate values for each control point, the standard deviation of coordinate values is employed as 

follows: 

ℎ𝑥 =  
1

𝜎𝑥
𝑞𝑥         (8) 
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ℎ𝑦 =  
1

𝜎𝑦
𝑞𝑦         (9) 

Where 𝜎𝑥  and 𝜎𝑦are the standard deviation, ℎ𝑥 and ℎ𝑦 are the normalized coordinate values, 𝑞𝑥 

and 𝑞𝑦 are the coordinate values. Each control point takes up a distinct bin in the hash table as a 

result of scaling factors multiplied by the normalized coordinate values of the control points. 

Voting is then utilized to discover the top k best matches against the query from the models kept. 

The resulting table is searched against control points of a query for recognition so that dissimilar 

control points to the query's control points are removed [68].  

When compared to previous strategies, experimental findings for the suggested technique reveal 

that both the computational cost and utilization of memory space have been significantly decreased. 

The approach is redundant in that each normalized point of the altered query model has to be 

validated to confirm that specific point exists in the hash table, even though memory and 

computational costs are both decreased. 

[69] suggests an indexing method for a biometric database made up of several attributes with a 

configurable number of dimensions. The research makes advantage of the geometric aspects of the 

features' principle components such that, after rotating the first two highest principal components to 

the fundamental axis of the coordinate system, it may insert fewer features into the hash table. 

Their approach, a two-stage triplet-based indexing strategy, is based on the triangle that triplets of 

features make. The triangle's angles serve as the features. These features are taken from database 

models using Speeded-Up Robust Features (SURF), which allows for quick calculation and the 

production of lower dimensional features. Prior to taking a rectangle window of these found key 

points, salient points are first determined by employing a Hessian matrix to find key points. 

The indexing and searching are phases of the triplet-based indexing approach. Following the 

extraction of features by SURF, the indexing step performs principal component analysis 

transformation, triplet construction, and hash table building. To make each model in the database 

invariant to translation, rotation, and scaling, principal component is employed. The retrieved 

features are likewise translated from their original positions when the model image is translated. 

Then, using mean centering, each characteristic of every model image in the database is translated 

to a different image such that the mean of the translated image is zero. 

Mean centering may be calculated by: 

 

𝑓 = 
1

𝑚
 = ∑ 𝑓𝑖𝑚

𝑖=1 , 𝑓𝑟𝑜𝑚 𝑓𝑖          (10) 

 

𝑆𝑖 = ∑ (𝑓𝑖
1 −  𝑓̅)(𝑓𝑖

1 −  𝑓̅)𝑇𝑚
𝑖=1         (11) 

 

From the list above, m stands for the model's features, 𝑓 for its mean value of the features of model 

M, and 𝑆𝑖 for its scatter matrix.  

Following transformation, the major components are then found and calculated using the 

eigenvalues as in equation (4). The major axes of the coordinate system are formed by rotating the 

principal components. Each feature takes up a distinct bin in the hash table once the normalized 

features are multiplied by a scaling factor. A hash table's position is assigned to each triangle in a 

model image. The coordinates are provided in equation (12). 

 

𝑝𝑖 =  (∝𝑚𝑖𝑛, (∝𝑚𝑎𝑥,−∝𝐴)           (12) 

Where  ∝ is the angle of a triangle produced by triplet feature points and 𝑝𝑖  is the 𝑝𝑡ℎ position of 

the features in the hash table. 

As in equation (13), the triangle is added to the hash table one at a time. 

 

𝐻(𝑝𝑖) =  𝐻(𝑝𝑖) 𝑈 (𝑀𝑖𝑑, �̅�)        (13) 

 



Journal of Computer Science an Engineering (JCSE) 
Vol. 3, No. 2, August 2022, pp. 71-94 

e-ISSN 2721-0251 

 

77 
http://dx.doi.org/10.36596/jcse.v3i2.548 

Where 𝑀𝑖𝑑,and �̅� are the model identity and descriptor vector connected to the triangle's greatest 

angle, respectively. 

The triangles in the model image that do not resemble the triangles in the query are filtered out 

during the searching phase. In order to access the correct bin, features are retrieved from an image, 

triangles are generated between triplets with the new coordinate, and these angles are then mapped 

into the hash. Only triangles whose distance is under a threshold are chosen. The Euclidean 

distance between the feature descriptor of a query triangle and all the triangles found in the bin is 

calculated. The remaining query's triangle is subjected to this procedure, and the results are then 

compiled into the candidate set. The candidate set's occurrences of the model identity are then 

voted on to determine the top matches. 

The triplets are well distributed, as practically every bin occupies an equal amount of triplets, 

according to experimental results of the suggested approach when compared with the existing 

techniques in terms of index distribution, which results in quicker indexing and reaction time. 

Although the plan is effective in terms of speed, it is unable to take data from many sources. 

For effective retrieval of skewed geographical data, [70] developed a unique key design based on 

R+-trees. On this study; indexing spatial data management in the cloud, the authors developed a 

new indexing method (KR+-index) based on R+-trees that supports effective multi-attribute 

accesses for skewed data on cloud data management systems (CDMS). By dynamically dividing 

and merging nodes, the R+-tree creates a balancing search tree and may limit the quantity of items 

in each node by adjusting the M and m. Key names are created for R+-tree leaves. To split the data, 

the R+-tree is employed, and the rectangles in the tree's leaf nodes are used as grids. 

The objects record for each rectangle, let's say R1, R2, and R3, is kept, and the data required in the 

scheme are created by the R+-tree with specified M, m. A new data point is added into a node by 

first looping up the key of the point that corresponds to the model to which the point belongs. To 

determine if a split would be necessary, the node's current size is checked. The node is divided into 

two new sub-nodes and the old node is removed when the number of points reached the appropriate 

limit. The original node's points will be distributed among the new sub-nodes. The method 

considers cloud data management to effectively extract skewed and spatia data. 

The method is effective for accessing data and offers support for both range and nearest-neighbor 

(NN) searches, but it lacks a mechanism for quick responses to queries regardless of the size of the 

query and the data being accessed. The parameters of the technique are the order O, the bottom and 

upper boundaries of the rectangle (M, m). The experimental finding demonstrates that, for skewed 

data, the new indexing approach, KR+-index, beats the most recent index method, MD-HBase. The 

system requires a significant amount of memory and lacks secrecy. Because computing requires a 

lot of processing time, the cost is significant. 

[46] suggested a method for keeping track of K-nearest neighbor requests over moving objects. 

Grid indices are used by the authors to create algorithms for both object’s indexing and querying. 

Additionally, a cost model was created. Continuous monitoring of several K-nearest neighbor (k-

NN) queries over moving objects was the major emphasis. In order to achieve high throughput, a 

two dimensional region of interest is taken into account in this study. Each item in this research has 

a unique identification 𝑝(𝑡) ∈ 𝑃(𝑡), and exists in the unit square [0, 1]2. The plane is divided into 

regular grid cells of equal size, and the coordinates of the objects 𝑝(𝑡)  are indicated as 
〈𝑝(𝑡)𝑥, 𝑝(𝑡)𝑦 〉. After that, the items are scanned. To make it possible to create their index, the 

scanned items are mapped into the correct cells. (𝑝(𝑡 ;) ∈ 𝑃(𝑡 ;) is used to keep the object's growing 

list for each cell at time t. Equation (14) illustrates how to build mobility and indexing, and 

equation (15) shows how to calculate the incremental query response time when mobility and cell 

size are present. 

 

Pr =  {
1 −  (

𝜎

2𝑣𝑚𝑎𝑥
)

2
 𝑖𝑓 𝜎 ≤ 𝑣𝑚𝑎𝑥

𝑣𝑚𝑎𝑥

𝜎
 (1 −  

𝑣𝑚𝑎𝑥

4𝜎
) 𝑖𝑓 𝜎 > 𝑣𝑚𝑎𝑥

       (14) 
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𝑡𝑞𝑢𝑒𝑟𝑦 =  (𝑏0 +  𝑏1𝜇√𝑁𝑝𝑏2𝜇2𝑁𝑃) . 𝑁𝑄 ,       (15)  

 

𝑇 =  (𝐶1 
(𝑙𝑐𝑟𝑖𝑡+ 𝛿)2

𝛿2 + 𝐶2 (𝑙𝑐𝑟𝑖𝑡 +  𝛿)2𝑁𝑃) 𝑁𝑄.      (16) 

 

Where 𝑣𝑚𝑎𝑥 denotes the maximum mobility, (𝑙𝑐𝑟𝑖𝑡)denotes the neighbors' distances from the 

bounding rectangles (width and height), 𝑁𝑃 denotes the length of the array, 𝑡𝑞𝑢𝑒𝑟𝑦 denotes the 

query time, 𝜎 denotes the size of the cell, 𝑁𝑄 denotes the number of queries, 𝑁𝑝 denotes the 

number of objects, 𝑇 denotes the overall time, and 𝜇  denotes the deviation. 

Equation (16) above demonstrates how query indexing may be utilized to respond to requests by 

obtaining a bootstrap from k-NNs queries. The scheme is effective in terms of scalability, memory 

usage, and speed, but it does not support time parameterised queries due to their focus on 

continuous queries for monitoring rather than a general spatial-temporal indexing method. 

Experimental results show that index construction requires a linear time and query answering time 

is nearly constant. 

[47] suggest an innovative method for indexing moving objects. The suggested main-memory 

approach uses frequent snapshots to move items into the index, which supports time-parameterized 

(predictive) searches and is simultaneously space-, query-, update-, and multi-CPU efficient. 

Fundamentally, MOVIES is similar to the method used by a cinematographer: since no camera can 

record continually changing data in a single frame, a cinematographer must take a sequence of 

static images at a specific frame rate. An illusion of continuous movement may be produced as 

long as the frame rate is higher than the inertia of the human eye (i.e., at least 24 frames per 

second). We take the exact same course of action. By taking into account a dataset of, let's say, N 

moving objects in a 2-dimensional region of interest, the authors were able to create a short-lived 

index picture that is only stored in the main memory for a brief amount of time. The domain of the 

scheme is |X|*|Y|, where |X| stands for the number of different places in the horizontal (or vertical) 

dimensions. For all incoming queries, the algorithm relies on read-only indexes and index frames. 

Data and query results are predicted using a timestamp-consistent predictive index and timestamp-

consistent query processing. The system is effective, according to experimental results, but it is less 

effective at dealing with more widespread issues with indexing data streams. Scalability and 

staleness must be balanced. When processing a huge number of data and changes, the approach is 

ineffective. 

[48] suggests the use of a composite tree index method for the run-time correlation engine to 

facilitate efficient event indexing and searching. The ability of compact tree data structures is used 

by the authors so that they may share a single set of event indices for all of the leaf nodes on the B-

tree. Additionally, they make advantage of the search index data structure to effectively process 

timestamp-based searches. Events are promptly stored to the file storage utilizing a container 

paradigm as they enter the system. A list of keywords is created from the message's extracted 

content. To index each extracted keyword, a node is created or returned by the tree structure. If an 

event is received using the RTCE event data format, the engine creates an event object, and the 

data for the index, which corresponds to the event index. Additionally, the tree structure acts as a 

lexicon for storing each term included in stream events, after which a reference is made. The root 

node, the transition node, and the leaf node make up the tree structure of the scheme. The query 

engine scans the list of requested keywords to execute a query. This approach uses a composite 

tree-based indexing strategy that is effective in terms of quick response times. The Java Garbage 

Collector (JGC) must repeatedly stop in order to free up the heap for the incoming events, which 

results in a reduction in performance, according to experimental data. As a result, the indexing 

performance is not justifiable. 

[49] created an epic system as an integrated framework to accommodate high concurrent OLTP 

queries and huge scale data analysis activities. Different types of indexes were created and 

incorporated into the system to enable effective query processing for a range of applications. Run-
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time Content Accessible Network (CAN) has incorporated an R-tree based indexing technique with 

a CAN-based routing protocol (RT-CAN). The multi-dimensional data and query processing in a 

cloud system is called RT-CAN. To accomplish efficient indexing, an integrated CAN-based 

routing protocol and an R-tree-based indexing system were utilized. To retain index items in d-

dimensional data, the author utilizes d-dimensional C2. An R-tree node is inserted into a CAN node 

using a mapping function. Then, R-tree nodes were indexed for use in indexing operations, and at 

the same time, the indexes for each subsequent R-tree node were published. In the epic system, a 

CAN node that has the key receives a query, processes it, searches its buffered global index, and 

returns the user-retrievable result. Equation (17) and (18) calculates the cost model and the 

anticipated processing time for KNN queries. 

 

𝐷𝑥 ≈  
2 √𝑟(

𝑑

2
+1)

𝑥

√𝜋
 (1 −  √1 − √

𝑘

𝑁

𝑑
)          (17) 

𝐶(𝑆) =  ∑ (𝑐𝐹𝑃(𝑛, 𝑄) + 𝐶𝑀(𝑛, 𝐿))𝑛 ∈𝑆         (18) 

 

Where d is the dimensionality of RT-CAN, K are the data items, S are the nodes of tree, N are the 

estimated numbers of data in the whole space, Γ(x+1) = xΓ(x), Γ(1) = 1 and Γ( 
1

2
) = 

𝜋

2
, and 𝑐𝐹𝑃 are 

the false positive and maintenance costs, respectively, and n stands for the node. 

The epiC system lacks scalability in terms of increased dimensionality [75], despite being effective 

at managing huge users and massive amounts of data [76-78]. The overlapping of d-dimensional 

space and range queries with a large number of index items, which results in a high communication 

cost, are the main causes of throughput declines as dimensionality increases. 

[23] provided a quick image search for metrics that were learnt. They discovered a Mahalanobis 

distance function that effectively encapsulates the underlying connection of the image. The authors 

encode the learnt metric parameterization into randomised locality-sensitivity hash functions as in 

equations (19, 20, 21, 22) to enable sub-linear time similarity search under the taught metrics. 

 

𝑑𝐴( 𝑥𝑖, 𝑥𝑗) = (𝑥𝑖 − 𝑥𝑗)𝑇𝐴(𝑥𝑖 − 𝑥𝑗),           (19) 

 

𝐴𝑡+1 = 𝐴𝑡 +  𝛽𝑡𝐴𝑡( 𝑥𝑖𝑡 − 𝑥𝑗𝑡)(𝑥𝑖𝑡 − 𝑥𝑗𝑡)𝑇 𝐴𝑡,        (20) 

 

𝐾𝑡+1 = 𝐾𝑡 +  𝛽𝑡𝐾𝑡( 𝑒𝑖𝑡 −  𝑒𝑗𝑡)(𝑒𝑖𝑡 − 𝑒𝑗𝑡)𝑇 𝐾𝑡,        (21) 

 

𝑃𝑟[ℎ(𝑥) = ℎ(𝑦)] = 𝑠𝑖𝑚(𝑥, 𝑦),            (22) 

 

Where t is an iteration, 𝛽𝑡  is a projection parameter, 𝑒𝑖𝑡 and 𝑒𝑖𝑗  are vectors to the it − th and jt −

th standard basis vectors, respectively, and 𝑑𝐴 is the distance between the matrix 𝑥𝑖 and 𝑥𝑗. 

Equation (22)'s probability of collision and similarity function is denoted by 𝑃𝑟, 𝑠𝑖𝑚(𝑥, 𝑦). The 

system is unreliable and uses an excessive amount of memory and processing time. 

[34] provided many indexing methods, including content-based image indexing, content-based 

multimedia indexing, audio indexing, and video indexing. These methods are together referred to 

as content-based indexing methodology. The indexing strategy aims to identify the targets speakers 

in movie dialogs and extract semantically significant movie events. The authors employed a 

searchable index of the speech material present in digital audio files created using an online audio 

indexing system. The system looks for the borders of acoustically homogenous segments as data is 

received and categorizes it into speech, music, and mixing classes. The speech fragments are 

grouped together to offer consistent speaker identification. The speech and mixing portions were 

transformed into text format using the ASR technique. After that, the output of the words is time-

stamped in XML along with other immediate data. The writers only discuss the various indexing 

methods and concentrate on the usage of online audio indexing systems. The system cannot handle 

complexity, diversity, or truth. 
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[50] By using a dynamic threshold to enhance cluster identification of latent semantic indexing, 

[50] suggest a method that is based on Latent Semantic Indexing (LSI) as part of the strategy. Input 

selection, pre-processing and indexing, latent semantic indexing, calculating similarity and 

grouping, and visualization are all included. The input is indexed using the individual words once 

the input variables have been specified and pre-processed. The latent semantic index is then used to 

process the pre-processed and index-generated matrix. The approach's text is represented as a term-

by-context matrix, or M, which is then broken down using the singular value decomposition 

method. The heuristic in [72] is utilized to determine the number of dimensions as a result of the 

size of the document used in equation (23). 

 

ℎ𝑒𝑢 =  (𝑚 𝑥 𝑛)0.2           (23) 

 

Where m and n, respectively, stand for the number of contexts and terms. The linked context is 

clustered using the similarity metric. The distance function is used in R, a programming language 

designed for data analysis and visualization, to construct these clustered linked contexts. The 

authors employed dynamic hybrid cut [79], which is renowned for considering the dendrogram's 

form and building the clusters from the bottom up. According to experimental findings, the 

dynamic hybrid cutting method significantly increases the ability of LSI to identify issues in source 

code. Because the dynamic hybrid cutting approach is so good at cutting asymmetric dendrograms, 

the findings beat the fixed height threshold cutting technique [73-74]. The scheme's flaw is that it 

only uses one expert per case study, allowing for the use of a priori information that can be 

exploited to affect performance outcomes. 

[51] designed the IG system for graph queries, which is a quick graph query processing with a 

cheap index. The method allows for quick indexing and effective query processing. The authors 

built their index using a quick approach for extracting network commonalities based on basic graph 

statistics. All of the database's data graphs were combined into a single graph and closely adhered 

to the frequency of the edges in order to achieve high throughput. The integrated graphs (IG) are a 

small representation of a collection of graphs that have a number of desirable properties and are so 

inexpensive to build that subgraph isomorphism testing is not necessary. They are also simple to 

maintain in terms of update database. Query processing in this study comprises query integration, 

direct incorporation of replies, and project-database filtering. The query response time is as given 

in equation (24) below: 

 

𝑇𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 =  (𝑇𝑠𝑒𝑎𝑟𝑐ℎ +  ∑ (|𝐶𝑞|𝑞 ∈𝑄 ∗ 𝑇𝐼
𝑂⁄ + |𝐶𝑞| ∗  𝑇𝑣𝑒𝑟𝑖𝑓𝑦)    (24) 

 

Where 𝑇𝑣𝑒𝑟𝑖𝑓𝑦 is the time needed to verify the candidates, 𝑇𝐼
𝑂⁄ is the disk input and output for 

obtaining each candidate graph, and 𝑇𝑠𝑒𝑎𝑟𝑐ℎis the index search time. According to experimental 

findings, index creation is quicker, uses less memory, and processes queries more efficiently than 

the state-of-the-art indexes utilized in this study. 

To address the tolerant retrieval problem in the shortest possible query time, [81] introduced the 

compressed permuterm index. The construction of the string, computing 𝐿 = 𝑏𝑤𝑡(𝑆𝐷), and 

creating the compressed data structure to facilitate RANK queries over the string L are the three 

processes that make up the compressed permanent index. The 𝑗𝑢𝑚𝑝2𝑒𝑛𝑑 function, created by the 

authors, may change backward processes and handle PREFIXSUFIX queries. To discover the rows 

that are prefixed, the search method BackPerm_search scans characters backward. When the 

BackPerm_search (𝛼$𝛽)  function is used, the number of dictionary strings is returned as 𝑙𝑎𝑠𝑡 −
𝑓𝑖𝑟𝑠𝑡 + 1. Applying 𝐷𝑖𝑠𝑝𝑙𝑎𝑦_𝑠𝑡𝑟𝑖𝑛𝑔 will return these strings. The BackPerm_search 

($𝑃$)function does the same thing, returning the value of First if First < last, otherwise concluding 

P ∄ D. Select activates the Display string (i) provided that 1 ≤ 𝑖 ≤ 𝑚. According to experimental 

findings, the plan is effective at addressing issues with tolerant retrieval. 
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4. Datasets used in indexing  

It is extremely challenging to execute real-time indexing of this complicated information or data, or 

big data, in cloud computing because of the complex nature of data flowing from many sources as a 

result of the availability of mobile devices and broad band internet. Volume, velocity, and variety 

are the elements that make up data. Value [53] and veracity [54] are factors that deal with the 

utility of data for decision-making, and the degree of data trustworthiness must also be met. The 

indexing system must be effective in indexing big data and meet requirements for volume, velocity, 

variety, veracity, variability, value, and complexity. Simulations are performed to verify the 

effectiveness of the indexing scheme with regard to search accuracy. The simulations don't take 

place in real time. For non-artificial intelligence (NAI) indexing approaches, the grounds for testing 

indexing accuracy included charts, images, geographic data, and text. Using a multimedia dataset, 

the artificial intelligence- and collaborative artificial intelligence-based indexing strategies are 

assessed. The effectiveness of indexing techniques based on artificial intelligence is also tested 

using text-based and annotated datasets. Researchers tested the viability and efficacy of the existing 

indexing techniques using various datasets. Data identification is facilitated by the platforms used 

for the datasets. For instance, the platform where the graph data will be used can help identify a 

graph dataset. [55] put a lot of effort into developing various indexing techniques on the iGraph 

graph dataset structure. Therefore, the implementation platform will aid users in understanding the 

type of data available in the dataset. Although there are other ways to gather data, it is not 

discussed in this section.  In [56], datasets from the US Forest Service website, Flickr, and the 

Wikipedia database, respectively, were utilized. 

Additionally, two multimedia datasets that were gathered and made publicly accessible from 

prominent Wikipedia articles are incorporated in [57]. The NUS-WIDE database was used to 

acquire the second dataset, which is the Flickr data. 2866 image-text pairings from Wikipedia were 

retrieved in order to assess the efficacy of their technique. Of these, 2173 served as the training set, 

while 697 served as the test dataset. 186577 image-text pairings total, of which 185577 are utilized 

as training data and the remaining 1000 pairs as test datasets, are present in the NUS-WIDE 

database.  

5. Categorization Methodology  

For the purposes of this review, indexing methods suggested by reliable researchers that were made 

available from highly regarded publishing journals as evidenced by their impact factor were 

employed. The Journal Citation Report (JCR) determines the rankings. In this study, the 

effectiveness of an indexing strategy was evaluated in terms of its ability to address big data 

requirements in cloud computing while also enhancing high recall rates. Additionally, this will help 

highly esteemed researchers of the highest caliber assess potential offered solutions in order to 

create effective indexing strategies that meet the needs of big data for big data indexing in cloud 

computing environments. In light of the performance advantage, the relevance of the methodology 

utilized in developing an efficient indexing system is examined. Big data factors are used to 

validate the performance of proposed indexing systems and compare them to other current 

schemes. One of the most crucial big data factors is volume, which is one of the characteristics that 

define big data. The 6Vs and C, also referred to as velocity, variety, veracity, value, variability, and 

complexity, are additional considerations. Some indexing methods just meet the volume 

requirement for data while others also meet the velocity requirement, which refers to the rate or 

pace at which new data are generated or current data are transformed. 

The ability of bit-scalable deep hashing codes to maintain discriminating powers with short codes 

is well established. [58] suggests using a deep convolutional neural network to build a supervised 

learning framework for producing bit-scalable and compact hash codes from raw photos. The use 

of compact and bit-scalable hashing algorithms in combination with neural networks, according to 

the scientists, produces outstanding results in similarity searches for picture and person re-

identification in surveillance. Additionally, the created codes preserve the ability to discriminate 

when employing short-length codes. It outperforms previous approaches like DSRH with a 
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significantly increase of 1.67% because of the integrated representation of features and hash 

algorithms. 

Table 1 is an overview of research journals reviewed in this work, along with an explanation of 

their features and the drawbacks of the current indexing techniques. The table provides a list of the 

various indexing methods that were utilized to categorize the data in this study. It has six vertical 

columns that list the author's name, the work's title, the technique utilized, a description of the 

method, the connected problem and its current solution, and the suggested solution. The table also 

includes features as optimising search time.  

Table 1.  State-of-the-art techniques 

Author 
Title of the 

work 

Method 

used 

Description of the method 

used 

Problem associated 

with the method used 

Proposed solution 

[23] 

Fast image 

search for 

learned 

metrics 

Hashing 

The image’s underlying 

relationship are captured. The 

learned metric 

parameterisation are encoded 

into randomised locality-

sensitivity hash function. 

There is high 

computational cost and 

not suitable for veracity. 

Data retrieval is very 

slow. There is high 

memory consumption. 

Deign an algorithm 

that would be 

suitable for veracity. 

Use of geometric 

hashing of SURF 

key points to 

improve the speed of 

recognition.   

[32] 

Supervise 

hashing 

with kernels 

Hashing 

Minimal amount of supervise 

information is used for high 

quality hashing. Supervised 

information are similar and 

dissimilar data pairs. The 

authors utilised the 

equivalence between 

optimising the code inner 

products and the hamming 

distances. 

It cannot handle large 

spectrum of information 

such as duplicate 

document detection. 

Design an algorithm 

that can minimise 

the minimum 

information criterion 

and the hamming 

distance. 

[34] 

Spherical 

hashing: 

Binary code 

embedding 

with 

hypersphere

s 

Spherical 

hashing. 

Hypersphere-based hashing 

function is use to map more 

spatial coherent data points 

into a binary hash code with a 

new binary code distance 

function the spherical 

Hamming distance suitable to 

the hypersphere-based coding 

scheme. 

The binary code embedding 

function 𝐻(𝑥) maps data in 

𝑅𝐷 points into the binary hash 

code. 

SHD does not provides 

significant improvement 

in terms of accuracy 

with the generalised 

spherical hashing.  

 

There should be a 

similarity 

embedding term 

incorporated into the 

independent hashing 

functions to improve 

accuracy. 

[35] 

Compact 

hashing 

with joint 

optimization 

of search 

accuracy 

and time 

Compact 

hashing 

The search time is analyse and 

model to ease the 

minimisation of the search 

time. The search time is 

minimised by balancing the 

hash bucket. 

The scheme cannot 

handle large scale data 

set. The use of one hash 

table degrade 

performance in terms of 

recall. 

Employ the use of 

hypersphere to 

reduce 

computational 

complexity by 

defining tighter 

closed regions 

among the data 

points. 

[47] 

Compact 

structure 

hashing via 

sparse and 

similarity 

preserving 

embedding. 

Special 

structure-

based 

hashing 

(SSBH) 

The sparse reconstructive 

relationship of data to learn 

compact hash codes. The 

information provided by each 

bit is utilised to obtain desired 

properties of hash codes. The 

information theoretic 

The computational 

complexity involve in 

the objective function, 

the map matrix, sparse 

weight matrix degrade 

performance. 

The hash functions 

should be design 

using the 

discriminative 

similarity 

information among 

the data points to 
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Author 
Title of the 

work 

Method 

used 

Description of the method 

used 

Problem associated 

with the method used 

Proposed solution 

constraint is incorporated into 

the relaxed empirical fitness as 

a regularising term to obtain 

the objective function 

reduce 

computational cost. 

[49] 

Asymmetric 

cyclical 

hashing for 

large scale 

image 

retrieval. 

Asymmetr

ic cyclical 

hashing. 

Two hash codes of different 

length are used for stored 

images in the database and the 

queries. The compact hash 

code is used for the stored 

images in the database to 

reduce storage cost while the 

long hash code is used for the 

queries for searching 

accuracy. To retrieve images 

from the database, the 

Hamming distance of the long 

hash code is computed for the 

query and the cyclical 

concatenation of the compact 

hash code of the stored images 

for better precision-recall rate.  

There is long response 

time and additional 

computational cost for 

calculating the 

Hamming distance of 

the compact hash code 

of the stored image and 

long hash code of the 

query. There is large 

storage cost due to the 

use of long codes. 

The hash function 

designed should be 

based on the 

distribution of data 

for effective short 

compact hash codes. 

[52] 

Different 

Indexing 

Techniques 

Content-

Based 

Indexing 

Semantically meaningful 

movie events are extracted 

from movies. An online audio 

indexing system is used to 

create a searchable index 

speech content contained in 

digital audio files. Boundaries 

of the acoustically segment of 

data are searched and the data 

is then classified as speech, 

music or a mixture. 

The focus was on online 

audio indexing system. 

The system is not 

suitable for veracity, 

variety and complexity.  

 

Manifold learning 

[61] 

Robust iris 

indexing 

scheme 

using 

geometric 

hashing of 

SIFT key 

points. 

Geometric 

Hashing 

(point 

based 

Local descriptors and relative 

spatial configuration are used 

for identity matching. SIFT is 

used to extract local features 

from noise independent 

annular iris image to detect 

key points. Geometry hashing 

is then applied to the detected 

key points for indexing in the 

database. In the retrieval 

phase, geometric hash location 

of query image is used to 

access the exact bin of the 

table and a vote is cast and 

images with certain number of 

votes are considered. Key 

point descriptors of possible 

candidates is matched with the 

query iris to get the potential 

match. 

The method is 

redundant in that the 

features are mapped 

into the hash table 

multiple times. The 

feature points are not 

normalised. There is 

high memory 

consumption and 

computational cost.  

Use SURF 

extraction technique 

to extract feature 

points from images. 

The feature points 

should be pre-

processed and 

normalised. DOG 

should be used to 

detect interest 

points. Data number 

should be reduced in 

the hash bins to 

improve the 

performance of 

recognition.  

We employ a 

technique to evenly 

distribute features 

into hash table 

(DSH).   

[64] 

Top-k 

queries on 

temporal 

data 

B –tree 

B-tree is used as a building 

block to design a SEB-tree to 

support temporal ranking 

queries. SEB-tree answer a 

top-k query for any time 

instance t in the optimal 

number of I/Os in expectation. 

The scheme is 

impractical when 

dealing with unknown 

behaviour of online data 

stream and it is also 

faced with high 

computational cost. It 

Graph partitioning 

and B+-tree (hybrid 

B-tree). 
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Author 
Title of the 

work 

Method 

used 

Description of the method 

used 

Problem associated 

with the method used 

Proposed solution 

Piecewise linear functions are 

break into segments and uses 

the upper envelop U(S) which 

is made of the portion of the 

segment visible from +∞ 

along y-axis. A series of 𝑙 + 1 

independent samples are 

created and the query 

algorithm is designed. 

suffer from the curse of 

dimensionality and 

cannot deal with large-

scale data base because 

of the memory 

constraint. 

[65] 

Indexing in 

network 

trajectory 

flows. 

Graph 

partitionin

g and B+-

tree 

The T-PARINET is composed 

of network model, query 

model, and the data model. 

The network model defined 

for the T-PARINET uses 

representation from the road 

network based on the 

geometric view and topology 

view. The geometric view 

captures approximate 

geographic location of the 

road network while they 

topology view uses the graph 

in order to represent the road 

sections and intersections. 

Consumes vast 

computing resources 

when carrying out 

online data stream 

indexing. It cannot 

handle large-scale data 

base. 

Fuzzy 

[66] 

MOVIES: 

Indexing 

moving 

objects by 

shooting 

index 

images. 

Fuzzy 

Short-lived index images are 

constructed and kept in the 

main memory for a very short 

time. The predictive and non-

predictive MOVIES 

algorithms are designed to 

support time parameterised 

predictive queries. The 

MOVIES indexing algorithm 

which is based on index 

frames uses frE-quent 

Snapshots to index moving 

objects. 

The scheme could not 

handle general 

problems of indexing 

data streams. There is 

trade-off between 

scalability and 

staleness. The scheme is 

inefficient in handling 

large volume of data 

and updates. 

Cache aware B+-tree 

as read-optimised 

structures. 

[67] 

Integrity 

auditing of 

outsourced 

data 

Query 

Authentic

ation. 

Small records are inserted into 

the outsourced data. 

Randomised and deterministic 

approaches for generating the 

inserted records are both 

studied. To effectively audit 

the integrity of the system, the 

inserted records in the query 

result are analysed. 

There is no guarantee 

that query 

authentication is 

correct. 

Authenticated tree-

based structures. 

[68] 

An efficient 

indexing 

scheme for 

face 

database 

using 

modified 

geometric 

hashing. 

Modified 

Geometric 

Hashing 

It uses the modified geometric 

hashing. SURF operators are 

used to extract control points 

from the face database. A pre-

processing method mean 

centering, principal 

component, normalisation and 

rotation are used to make the 

control points invariant to 

translation, rotation and 

scaling. 

Redundancy. The 

scheme does not 

support indexing of a 

database that is dynamic 

(increase and decrease 

in size) to enable 

modification. Variant 

are not uniformly 

distributed into the hash 

space. High memory 

cost. 

Employ dynamic 

geometric hashing 

technique to support 

insertion, deletion of 

feature points, data 

points, data and 

updating the bin 

table. Use prime 

hash function to 

maximise the 

distance of keys with 

collision and also to 

ensure uniform 

distribution of 

variant into the hash 

space (bin). 
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Author 
Title of the 

work 

Method 

used 

Description of the method 

used 

Problem associated 

with the method used 

Proposed solution 

[69] 

Use of 

geometric 

features of 

principal 

components 

for indexing 

a biometric 

database. 

Triplet-

based 

hashing 

Geometric features of 

principal components are used 

to insert fewer features into 

the hash table. SURF is used 

to extract features from the 

database by using Hessian 

matrix to detect key points. . 

The scheme is not 

suitable for variety and 

does not support 

modification of the 

database. There is high 

search time and 

memory cost. 

We use compact 

hash codes to reduce 

memory cost. Use 

dynamic geometric 

hashing technique to 

support modification 

of data. There 

should be minimal 

number of data 

points in the hash 

table to improve the 

speed of recognition. 

The number of 

feature points for 

each image in hash 

bins should be equal. 

[70] 

Indexing 

spatial data 

in cloud 

data 

managemen

t 

R+-tree 

A key names for leaves on an 

R-tree are designed. R-tree is 

used to divide the data and the 

rectangle in the leave nodes 

are treated as dynamic grids. 

Data points are inserted into 

the node. Range query is used 

to get the geographic 

coordinates of the overlapped 

grids.   

There is high 

consumption of space 

and high response time 

for large dataset. The 

search performance 

drops with data of high 

dimensionality. 

There should be an 

efficient scheme 

suitable for velocity 

and volume 

[71] 

Monitoring 

k-NNs 

queries over 

moving 

objects. 

Fuzzy 

Grid indices are used for 

algorithm formulation to index 

objects and queries. Objects 

are scanned and mapped into 

corresponding cells and their 

respective index are then 

constructed. 

It does not support time 

parameterised queries 

due to their focus on 

continuous queries for 

monitoring in contrast 

to a general spatial-

temporal indexing 

method. Frequent 

creation of index image 

consumes time. 

Use frE-quent 

Snapshots to support 

item parameterised 

(predictive) queries. 

[72] 

High 

volumes of 

event stream 

indexing 

and efficient 

multi-

keyword 

searching 

for cloud 

monitoring. 

Composit

e tree (B-

tree) 

The solution is built based on 

the composite index data 

structure which shares a single 

list of event indices for all the 

leave nodes on the B-tree. 

Search index data structure is 

used to efficiently process 

timestamp-base queries. 

There is high 

consumption of 

computing resources 

because of many 

operation involved. The 

scheme suffers from the 

curse of data 

dimensionality. 

Hybrid indexing 

classifier that 

considers dynamic 

graph partitioning. 

Graph partitioning 

and B+-tree (hybrid 

B-tree). 

[81] 

The 

compressed 

permuterm 

index 

Permuter

m index 

Compute (First’, Last’) = 

BackPerm search(𝛾$𝛽) 

• Compute [First’’, Last’’] = 

BackPerm search(𝛽 ) 

• For each r ∈ [First’, Last’] 

repeatedly apply Back step 

until it finds a row which 

either belongs to [First’’, 

Last’’] or to [1,m] (i.e. starts 

with $). 

High memory 

consumption. 

Cross-indexing of 

binary SIFT codes. 

[82] 

Indexing 

multi-

dimensional 

data in a 

R –tree 

and 

content 

accessibili

Indexes are designed and 

integrated. The R-tree based 

indexing scheme and the 

content accessibility network 

An increase in 

dimensionality result to 

decreases in throughput 

due largely to 

Compact R-tree to 

utilised storage 
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Author 
Title of the 

work 

Method 

used 

Description of the method 

used 

Problem associated 

with the method used 

Proposed solution 

cloud 

system 

ty network 

(CAN) 

based routing protocol are 

then integrated as RT-CAN. 

R-tree node are then inserted 

to a CAN node. The R-tree 

nodes are then indexed. A 

query is directed to a CAN 

node that contains the key for 

query processing. 

overlapping of d-

dimensional space and 

range query with large 

number of index items 

which leads to high 

communication cost. 

6. Taxonomy of indexing techniques   

This study's indexing methods are grouped and/or classified to provide a clear understanding. This 

is known as taxonomy. Non-artificial intelligent (NAI), artificial intelligent (AI), and Collaborative 

Artificial Intelligent (CAI) are the three categories on which the taxonomy of indexing approaches 

is built. These indexing systems are further divided into components for categorization. Non-

artificial intelligence, for instance, is further broken down into components like hashing, graphs, 

and bitmaps. Machine learning (ML), soft computing (SC), as well as Knowledge Representation 

and Reasoning (KRR), are divisions of artificial intelligence. The sub-division of collaborative 

artificial intelligence is Collaborative Machine Learning (CML), collaborative soft computing, and 

collaborative support vector machines. 

Non-Artificial Intelligent (NAI): The NAI uses indexing methods including bitmap and hashing 

[52], as well as tree-based indexing methods like B-tree [59], [19], and R-tree [60-61]. With regard 

to indexing creation and query response, this category of indexing strategies takes a simple 

approach. Big data may be retrieved from the cloud relatively quickly and effectively using the 

indexing techniques included in this group. These indexing strategies fall into a group that is unable 

to identify large data's unpredicted behavior in cloud computing. The most frequently accessed 

items in a given data collection are used to generate indexes, not the relationships between texts or 

the meaning of the data items, as would otherwise be the case. 

Artificial Intelligence (AI): AI can recognize the unidentified behavior of massive data, and can 

apply rule-based automation for recognized patterns. Rule-based information was used in AI 

indexing approaches to increase the effectiveness of huge data retrieval. These indexing methods 

fall under a very scientific category. Machine learning, soft computing, knowledge representation, 

and reasoning are all categories of artificial intelligence. When compared to NAI approaches, they 

are frequently viewed as being less effective since they construct links between data items by 

examining the trait or pattern and grouping things with comparable patterns [62]. Latent Semantic 

Indexing is another indexing method used by AI [63-66]. 

Collaborative Artificial Intelligent (CAI): The accuracy and search time shortcomings of the AI 

indexing methods are supplemented by the CAI indexing schemes. It uses artificial intelligence as a 

foundation to create effective indexing algorithms that outperform AI approaches. The terms 

Collaborative Knowledge Representation and Reasoning (CKRR) and Collaborative Machine 

Learning (CML) are used to describe CAI methodologies. When it comes to indexing massive data 

in a cloud computing context, the CAI and AI behave similarly. 

The creation of indexes in NAI indexing methods is based on the objects that are often searched for 

in the database. For instance, data retrieval is performed in a sorted manner in tree-based indexing 

approaches, meeting the indexing techniques' reputation for their quick recall rate and storage cost 

minimization. Data is hashed to increase retrieval precision and decrease memory use. With the 

help of the feature fusion based hashing approach [67], it is possible to detect large-scale image 

copies in a huge dataset for big data in cloud computing by making use of the relationship between 

two feature models. This approach performs effectively in terms of data volume for large data 

requirements. 

Unknown behavior in massive data is found using AI indexing techniques. The indexing methods 

rely on soft computing, knowledge representation and reasoning, and machine learning. An 
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unstructured dataset can have patterns between its components according to the indexing technique 

known as Latent Semantic Indexing (LSI), which is based on an artificial intelligence indexing 

approach. It may build associations between phrases with comparable contexts and extract the 

semantic meaning of a dataset. ML is an AI-based indexing technique that involves an iterative 

process of pattern observation, mathematical adjustment, and prediction rating [12]. An AI-based 

machine learning method is called "manifold learning." [68] suggested a concept of local subspace 

indexing for image search that enables quick query selection. The program might incorporate 

several learning algorithms to improve recognition performance. 

An indexing strategy based on multi-agent or non-multi-agent systems benefits from the CAI 

indexing techniques in terms of accuracy and search time. The effectiveness of these strategies also 

depends on the collaborative power of the adopted method. 

7. Performance Evaluation of hashing techniques based on Mean Average Precision (MAP) 

MATLAB implementation that is freely accessible was used to evaluate some techniques reviewed 

in this article. The primary assessment metrics for large-scale image retrieval studies are mean 

average accuracy and precision-recall. Recall rate is a metric for determining and illustrating search 

accuracy. The ratio of accurately recovered images to the total number of images actually retrieved 

from a database is known as the recall rate. In this section, five cutting-edge hashing algorithms for 

high-dimensional closest neighbor search were evaluated for performance. Among the algorithms 

examined are: 

DSH: Density sensitive hashing combines the advantages of data-dependent and data-independent 

hashing algorithms [80]. It is a semi-supervised based hashing approach. The forecasts are 

produced using basic concepts. This method creates projections using chosen principles rather than 

completely random selection [80]. It is a development of LSH. 

LSH: Locality sensitive hashing is a hashing-based approach that generates projections 

independently of the distribution of the data. LSH makes projections at random. The vectors used 

to generate the projections are chosen at random from a p-stable distribution. It applies to the 

change detection domain and is an unsupervised approach [30]. SHD is a hashing-based approach 

that makes use of spherical Hamming distance. KLSH generalizes the Locality Sensitive Hashing 

to the Kernel Space [56], Shift-Invariant Kernel Hashing for estimating shift-invariant kernels [40]. 

The SIKH is based on random feature hashing. 

 

7 Methods 

This section looks at the geometric data features' magnitude structure. The image characteristics are 

indexed using the results of the quantized hashing. The experiment used a combined strategy that 

increases both search accuracy and precision while processing binary hash codes using five cutting-

edge hashing algorithms. To cut down on storage and computational costs as well as to improve the 

precision and speed of queries, a dataset including sample data points was indexed. This work 

addresses the samples of the data points as 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁, where X represents the database. 𝑋 =
{𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛, … , 𝑥𝑁} ∈  𝑅𝑑 × 𝑁 represents the data points contained in the database. In this case, 

X is the database and R^(d × N) is the dimensional space of size N. Mapping of these data points to 

k-bit binary hash code is carried out by the hash function model in equation (25) 

 

𝐻(𝑥) = {ℎ1(𝑥), … ℎ𝑘(𝑥)}  ∈ {−1, 1}𝑘             (25) 

Where length of the binary hash code is denoted by k..  

 

A similarity-preserving term was used to improve search accuracy in a dataset. With a constrained 

Hamming distance, the similarity preservation term refers to the similarities between the data 

points Q(y). Comparative geometric feature points of the two data samples' similarities are 

retrieved as Qij.  

Equations (26) or (27) are used to balance the distribution of data points for each bit. 
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𝑝𝑟[ℎ𝑖(𝑥𝑖) = 1] =  
1

2
,𝑥 ∈ 𝑋, 1 ≤ 𝑖 ≤ 𝑡                (26) 

𝑁𝑖 = ∑ 𝑁𝑖
2𝑀

𝑖=1                                     (27) 

 

Where 𝑁𝑖 is the number of training samples in the 𝑖𝑡ℎ bucket and 𝑀 is the number of buckets. To 

achieve independence between two bits given that 𝑥 ∈ 𝑋 and 1 ≤ 𝑖 < 𝑗 ≤ 𝑡 where i and j are the 

𝑖𝑡ℎ and j𝑡ℎ data points, and t is the threshold, hash functions are design to be independent and the 

data points are distributed equally to each hash bucket as in equation (28).  

𝑝𝑟[ℎ𝑖(𝑥) = 1, ℎ𝑗(𝑥) =  1] =  𝑝𝑟[ℎ𝑖(𝑥) = 1] . 𝑝𝑟[ℎ𝑗(𝑥) = 1] = 
1

2
 . 

1

2
 =

1

4
   (28) 

 

The next stage is to integrate the balanced partitioning sections with the similarity preserving term 

to speed up and boost search accuracy at the same time. For search precision and the least amount 

of information, we employ the similarity-preserving term Q(y). The joint optimization component is 

accountable for the concurrent optimization of search precision and search time, enabling high 

search precision with short search times. To make optimization easier, a linear function is 

parameterized and relaxed. 

 

The search accuracy is improved by reducing the Hamming distance between comparable data 

pieces. Mathematically, this may be written as in equation (29): 

 

𝑄(𝑦) ∑ 𝑥𝑖=1,…𝑁 + ∑ 𝑥𝑗=1,…𝑁        (29) 

 

To improve search precision and speed at the same time, balanced partitioning and the similarity 

preserving term are coupled. 

7.1  Experimental Results 

The dataset was subjected to hash functions, which produced hash codes with lengths of 8, 16, 32, 

48, 64, and 96 bits. The mean average accuracy for each technique that was tested using the SIFT 

1M data sets is shown in Figure 1. As can be observed, the random projection methods perform 

poorly when the code length is small while improving as the code length rises in terms of mean 

average accuracy. When the code length is low, the learning-based spherical hamming distance 

performs quite well in comparison to MAP, but as the code length rises, no discernible 

improvement was made. When the code length is short, as seen in Figure 1, the Geo SPEBH 

reported a high MAP. The approach fails to effectively maintain the similarity between the binary 

codes and the original data points, which results in the behavior of the SHD. With the exception of 

the DSH method, the SHD performs better than every other algorithm when the code length is 96 

bits. The date-independent based algorithms, on the other hand, perform well with lengthy binary 

codes due to their capacity to randomly create their hash table while paying close attention to the 

distribution of data points. 
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Fig 1. The MAP of all algorithms on SIFT IM 

 

The DSH [71] initially quantified the data by dividing up the points into groups using the k-means 

method. To evaluate the accuracy of the provided quantization, sum of square error (SSE), which is 

the same as distortion, is expressed as the quantisation result represented as S.  

The training and testing times of the approach reduce as the dimension lowers because fewer 

projections need to be made at random utilizing the geometric information in the data. Since DSH 

includes calculating each projection's entropy in relation to the entire database, it takes longer as 

the code length rises. The amount of bits necessary to implement each algorithm (i.e. 16, 32, 64, 

and 96 bits) is the storage requirement. 

The DSH has three parameters: p, which determines the number of k-means iterations, r, which 

determines the number of r-adjacent groups, and, 𝛼  which determines the number of groups. The 

default settings for 64-bit hash codes are p=3, 𝛼 =1.5, and r=3. As the k-means iteration count 

varies, DSH's performance also changes. It is evident from the data that when the number of 

iterations rises, the MAP and the learning time of DSH do as well. An acceptable MAP is obtained 

after 3 iterations in k-means. Additionally, DSH's performance varies as the number of groups 

represented by 𝛼  changes. As a result, the group number produced by k-means likewise alters. As 

the group size grows, the MAP and the learning time of DSH also increases as  𝛼 =1.5, which 

offers a fair balancing when examining efficiency and accuracy of the scheme. Additionally, DSH 

performance varies with the number of r-adjacent groups, thus when r < 5, high performance was 

attained. 

Because in a d-dimensional space, a near area must be defined by d+1 hyperplanes,  d+1 

hyperplane are necessary to define a closed area in a hyperplane. DSH continually produces more 

and more duplicated, less significant forecasts. DSH's performance suffers due to the redundant 

projections, making it difficult to scale with massive databases. For this, an optimized method is 

needed to maintain memory cost while balancing the trade-off between search accuracy and search 

time. 

Additionally, DSH creates additional projections that are utilized to separate two distant groups as 

the number of r-adjacent groups rises. Making more and more forecasts becomes redundant and of 

less importance. The performance of DSH is negatively impacted by projection redundancy. With 

large datasets, DSH struggles to scale and ignores search time as a crucial hashing component. 
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Table 2 gives the description of the performance of each hashing technique based on mean average 

precision. The description in Table 2 helps to assess the effectiveness of algorithms based on MAP 

and storage evaluation of hashing approaches. 

 

Table 2.  Performance of hashing techniques based on Mean Average Precision 

Method of 

hashing 

techniques 

Authors MAP 

 

Storage 

  Very Good Good Average Very Good Good Average 

SHD [34]         

LSH [30]         

DSH [80]         

KLSH [56]         

SIKH [40]         

 

8. Discussion and future directions 

In relation to large data in cloud computing, many indexing algorithms have been given and 

analyzed to highlight their merits and flaws. 

Data Reduction: A proposed square kilometer array telescope now generates millions of terabytes 

of data, while petabytes of data are produced by scientific research and modeling results. The 

majority of these massive data sets are chaotic or unstructured. These noisy and unstructured data 

need to be repaired, well-organized, and formatted simply. The filters used to filter the 

experimental and simulation data are designed to prevent the loss of important data. Because of 

this, the science of data reduction turns into a murky field that has to be investigated by academics. 

Data provenance is implied by the ability to comprehend information and move it through the 

analysis pipeline. In order to trace the connection and transport data provenance across data 

analysis pipelines, it is preferable that a data system be created. 

Data description: Determining the quantity of the stored data and describing the type of data as it is 

being saved are crucial. To define and comprehend the stored data for these, it is necessary to 

automatically produce accurate metadata. Researchers should thus focus on developing data 

systems that can produce metadata and transmit that metadata through data analysis pipelines. 

Data Integration: Raw data gathered from sensor devices, student records, health records, x-ray 

image data, graph data from mathematical and statistical analysis, photographs, and videos cannot 

be successfully analyzed. In order to collect information from the many sources, arrange it, and put 

it in a manner that can be analyzed, researchers urgently need to create a strategy. 

Data Analysis and Mining: Data mining and analysis are necessary in order to make huge data 

relevant for decision-making. Relational databases are only partially capable of doing in-depth 

analyses of massive data in cloud computing. Therefore, it is advised that researchers create a 

productive big data analysis strategy. 

To help users pick the best method for indexing big data in cloud computing, users should take into 

account search time, a crucial performance measure in assessing the speed necessary to retrieve 

information from a database. Additionally, while constructing and selecting an indexing technique, 

the amount of bandwidth needed to move data from source to destination must be taken into 

account. 
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9. Conclusion 

The datasets used, as well as the organization, categorization, and comparison of big data storage, 

management, and indexing strategies, were reported in this study. This study also examines the 

performance evaluation of indexing strategies based on their categorization. Big data indexing 

requirements, including volume, velocity, variety, veracity, value, variability, and complexity, were 

the basis for the evaluation. The study's major goal is to analyze these big data indexing needs and 

define existing approaches in order to inform famous researchers about the fundamentals that will 

serve as a framework for developing optimized indexing strategies for specific platforms to support 

the veracity of big data. The report addressed issues with the approaches already in use and made 

suggestions on how to fix them (Table 1). The taxonomy includes NAI, AI, and CAI as the 

indexing methods that are currently available. Future research directions are presented in the 

debate. In order to assess the effectiveness of algorithms based on MAP, Precision-Recall, and 

storage, evaluation of hashing approaches was done. 
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