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This paper investigates how the Fisher score feature selection approach can be 

used with capsule networks for diabetes detection. It also evaluates how well this 

algorithm works based on a number of evaluation parameters. The selected features 

using Fisher score method was then employed to train a capsule network model. 

Accuracy (94%), precision (94%0, recall (94%), F1 score (94%), and other 

performance evaluation metrics were thoroughly analyzed to determine the 

algorithm's efficacy. The results demonstrated that the combination of Fisher score 

feature selection and capsule networks yielded promising performance in diabetes 

detection. The selected features effectively captured the relevant information 

necessary for accurate classification The capsule network model was very accurate, 

which shows that it could be a good tool for diagnosing diabetes. Also, the accuracy 

and recall values showed that the algorithm could correctly place both positive and 

negative cases of diabetes, minimizing the risk of misdiagnosis. By merging the 

Fisher score feature selection approach with capsule networks, this research study 

contributes to advancing diabetes detection. 
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1. Introduction 

Insufficient insulin production by the pancreas or resistance to the effects of insulin both contribute to 

the development of diabetes, a prevalent and debilitating chronic disease. As a result, there is an elevation 

of glucose concentration in the bloodstream, known as hyperglycemia [1]. According to [2] the global 

prevalence of diabetes would rise from 382 million in 2013 to 592 million by 2035. Heart disease, 

blindness, kidney failure, and amputations are all potential outcomes of this disorder, making it complex 

enough to warrant regular monitoring and treatment. In order to effectively manage diabetes, early 

detection, and intervention are essential, but diagnosing the disease can be difficult because there are 

frequently no symptoms in the early stages. Diabetes translates roughly as excessively sugary urine. The 

three kinds of diabetes are Type 1, Type 2, and Gestational Diabetes. Lack of physical labor, obesity, 

and lifestyle modifications are the primary causes. Diabetes symptoms include polydipsia and polyuria, 

among others [3]. The fundamental defect is a relative or absolute absence of insulin, the pancreatic 

hormone that promotes the transfer of glucose into tissues for glycogen or fat storage. The infiltration of 

insulin-producing cells by the immune system is the underlying cause of type 1 diabetes, which is treated 

with insulin therapy. Type 2 diabetes is caused by a relative insulin shortage typically coupled by tissue 
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insulin resistance. It is a condition that progresses slowly, so although diet and lifestyle adjustments are 

often effective initially, oral medication and insulin may be required in the long run. Long-term vascular 

complications affecting both small and large arteries are associated with diabetes [4]. 

One of the foundations of AI is machine learning (ML), which builds on prior knowledge to improve the 

performance of AI systems [5].  Machine learning attempts to address the question of how to make 

computers that get better on their own as they use them [6].  For a variety of perceptual tasks, machine 

learning systems can learn to map inputs to outputs [7].  It includes training a model on a collection of 

labeled data and then using that model to generate predictions on additional, unlabeled data. ML's two 

basic components are Supervised Machine Learning and Unsupervised Machine Learning [8]. 

Supervised Learning is the most prevalent kind of machine learning. During the training phase, it labels 

each of the system's inputs with the value it wants to get out of them. Another popular type of machine 

learning is “Unsupervised Learning”, which makes conclusions without the idea of labels [9]. The 

majority of researchers employ linear regression, support vector machines, random forests, and naïve 

Bayes, as well as other comparable techniques. [10]–[14]. Cluster analysis, K-means, the Apriori 

algorithm, etc., are some of the most popular ways to learn without being watched [15]–[17]. Some of 

deep learning algorithms were also applied for diabetes detection [18], [19]. Several challenges in 

healthcare, including the detection of diabetes, have been overcome via machine learning. There are 

multiple perks to using machine learning algorithms for diabetes detection. First, it can uncover patterns 

in large, complex datasets that are not readily apparent to humans. Second, it can provide timely and 

accurate diagnoses, allowing for early intervention and improved outcomes. Thirdly, it can reduce the 

need for time-consuming and inconvenient diagnostic tests that are intrusive or costly. 

1.1. Related works 

Diabetes disease draws considerable interest in the machine learning community. Various machine 

learning methods, such as DT, Random Forest, LR, Discriminant Analysis, SVM, kNN, ensemble 

learners, etc., are used for early stage diabetes detection [20]–[25]. Various methods, such as 10-fold 

cross-validation [26], average classification accuracy [27], and and so on, were used to evaluate the 

effectiveness of the results. 

The Pima Indians Diabetes Data Set, which contains data on patients with and without diabetes, was 

used in [28]. Numerical discretization, missing value management, and attribute selection and 

identification are all part of the initial stage of data preparation. The creation of a diabetes prediction 

model utilizing the decision tree algorithm is the second stage. To create a decision tree-based diabetes 

prediction model, Rapid-I's RapidMiner is also applied to the Pima Indians dataset's diabetes data. [29]. 

Using feature selection techniques such as recursive feature elimination [30], the genetic algorithm (GA) 

[31], and the Boruta package [32], the performance of decision tree classifiers was enhanced. After 

applying the feature selection technique, the PID dataset was utilized to evaluate the model's performance 

[33]. Random forest is one of the most recent and fruitful findings in decision tree learning research. It 

is widely employed in the medical field, especially for diagnosing diabetes [34]. Using a specific 

parameter for the Random Forest algorithm, from which a binary mask of exudate is derived after 

intensity thresholding, the sensitivity is 91.40 percent and the accuracy is 94.38% [35]. Using the 

Minimal Redundancy Maximal Relevance feature selection method to select features from the Pima 

Indians Diabetes Data and applying seven distinct types of performance metrics using a 10-fold cross-

validation approach, a remarkable accuracy was attained through the Random Forest approach. [36]. 
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Using the same dataset, Naive Bayes achieved 76.30% accuracy. The ROC curve verified the results 

[37]. Using a different dataset, the classical Naive Bayes model yielded an accuracy rate of 87.69%, 

which increased to 88.65% when the GA feature selection method was applied [38]. Another comparison 

study of [39] revealed that Naive Bayes had a 78.57% accuracy [40]. The Restricted Boltzman machine 

is a basic building block of the Deep Network which can be used as a classifier as well as feature extractor 

to obtain better results. Variational autoencoder has been used for data augmentation and Sparse 

autoencoder for feature augmentation on the Pima Indians Diabetes Database. Convolutional Neural 

Network has been used for classification which yielded 92.31% accuracy on detecting diabetes [41]. 

Comparison of Gaussian Naïve Bayes, Linear Support Vector Machine and the Random Forest through 

the lens of predictive performance accuracy and Area Under Curve score demonstrated that LSVM 

showed best accuracy with 78.39% and Random Forest performed the least with an average accuracy of 

72.72% [42]. Enhanced Support Vector Machine has been applied on a specific dataset and the output 

has been used as an input through Deep Neural Network to achieve a combined efficacy [43]. A 

comparison of the performance of two-class logistic regression, the two-class neural network, the two-

class decision jungle, and the two-class boosted decision tree on a dataset containing 15,000 women aged 

20 to 80 revealed the two-class boosted decision tree to be the most accurate model [44]. LR, RF, and a 

DNN containing the embeddings for the categorical features have been applied in a specific dataset. 

DNN with embeddings showed promising results with an F1 score of 1.0 on the test data [45]. Extreme 

gradient boosting has been applied as classifier using ECG signals as inputs to predict patients with type-

2 diabetes or impending type-2 diabetes. The algorithm accurately predicted the classes with 97.1% 

precision, 96.2% recall, 96.8% accuracy, and 96.61% F1 score [46]. The main limitation of the proposed 

models is that the lack of analysis of performance evaluation metrics. This paper analyzed many 

performance evaluation matrices like accuracy, precision, recall, f1-score etc. in order to derive a better 

prediction model using which is absent in most of the works related to diabetes prediction as they have 

taken selective performance evaluation matrix for their predictions. The following are the paper's 

contributions: 

1. Explore and analyze the efficacy of Fisher score feature selection combined with capsule 

networks for diabetes detection. 

2. Evaluate the performance of the capsule network model trained on selected features, focusing 

on accuracy, precision, recall, and F1 score. Assess the method's ability to appropriately classify 

diabetes cases, reducing the risk of misdiagnosis. 

3. Showcase the promising performance of the Fisher score feature selection and capsule networks 

approach in diabetes detection. 

4. Highlight the potential of the proposed approach to enhance the accuracy and efficiency of 

diabetes detection, ultimately leading to personalized treatment options and improved patient 

outcomes. 

 

2. Methods 

2.1 Proposed System Architecture: 

This paper utilizes a dataset which was collected from a hospital in Sylhet. Important feature has been 

extracted from the dataset. The capsule network has been developed using multiple layers. All the values 

have been converted to numerical values. The performance of the Capsule Network has been measured 

in terms of precision, F1-score, recall etc.  
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Figure 1. Architecture of the proposed system. 

2.2 Dataset Description 

As diabetes is a critical disease new data were collected utilizing existing benchmark datasets, 520 

individuals' diabetes-related symptoms are included in this data set. It includes details about individuals, 

such as symptoms that may contribute to diabetes. This dataset was collected through a direct survey of 

individuals just diagnosed with diabetes or who are not yet diabetic but exhibit few or no symptoms. 

Sylhet Diabetes Hospital in Sylhet, Bangladesh, patients submitted the data [47]. The following 

information describes various aspects of a dataset related to diabetes, shown in figure 2. 

1. Age: The data was collected from a diverse population spanning a wide age range, encompassing 

individuals aged between 20 and 90 years. 

2. Gender: There are total of 520 individuals and among them, 328 are male and 192 are female.  

3. Polyuria: Increased urination is a common diabetes symptom. In response to elevated blood 

glucose levels, the kidneys must work harder to filter and absorb extra glucose, resulting in an 

increase in urine production [48]. 

4. Polydipsia: Another usual sign of diabetes is having to drink a lot. This happens because the body 

is losing water because of increased urine production [49]. 

5. Sudden weight loss: Unintentional weight loss can be a symptom of diabetes that has not been 

diagnosed. This is a result of the body's inability to correctly utilize glucose for energy, causing it 

to rely on fat reserves instead. It is usually found on type 1 or juvenile diabetes mellitus [50]. 

6. Weakness: Due to the body's inability to utilize glucose as an efficient source of energy, diabetes 

may induce symptoms such as weakness and weariness [51]. 

7. Polyphagia: Increased appetite is another diabetes symptom. This occurs when the body's cells 

do not receive enough glucose, causing inadequate stimulation of the satiety center and causing 

the body to crave more nutrition [52]. 

8. Genital thrush: Diabetes may affect the immune system, increasing susceptibility to fungal 

infections such as thrush [53]. 

9. Visual blurring: When blood sugar levels are too high, the shape of the eye lens might alter, 

which can make it difficult to see [54]. 

10. Itching: Itchiness of the skin is a prevalent complaint among diabetics, which may be due to poor 

circulation or nerve injury [55]. 

11. Irritability: Mood swings and irritability are two signs that diabetics may experience as a direct 

result of fluctuations in their blood sugar levels [56]. 

12. Delayed healing: High blood sugar levels can damage blood vessels and neurons, resulting in 

inefficient circulation and slowed wound healing [57]. 

13. Partial paresis: The damage to the nerves that diabetes causes may sometimes lead to a 

weakening of the muscles or even partial paralysis [58]. 
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14. Muscle stiffness: Because of the way that diabetes alters the way that the body processes glucose, 

it is possible for diabetics to have tight muscles [59]. 

15. Alopecia: Diabetes may cause poor circulation as well as hormonal abnormalities, both of which 

can lead to hair loss or thinning [60]. 

16. Obesity: Obese persons are more prone to acquire type 2 diabetes, which occurs when the body 

develops insulin resistance. Being obese is a risk factor [61]. 

17. Class: ‘Diabetes Positive’ and ‘Diabetes Negative’ are the two classes of this research work. 

 

Figure 2.  Pearson Correlation between Features. 

2.3 Feature Selection 

Fisher Score: Fisher Score is one of the typical supervised feature selection approaches that aims to 

identify the most efficient features that reduce within-class scatter and maximize between-class scatter 

[62]. This method is useful selecting features that are not only relevant but also the independent from 

each other. As Fisher sccore is a linear discriminant method, it's effective at capturing linear relationships 

between features and class labels. Each feature is given a score based on its ability to distinguish between 

classes. The higher the score, the greater the feature's classification relevance. Features with better scores 

are thought to be more useful for classifying and are chosen for the final model [63]. This method works 

well when the dataset size is small to medium.  As the experimental dataset size is medium, this method 
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is effective for selecting key features. The method can boost the performance of the classification model 

and lower the risk of overfitting. By implementing Fisher score feature selection method, 11 attributes 

were selected. 

2.4 Proposed model: 

2.4.1 Capsule Network 

Since the 2011 development of the concept, capsule networks have received significant interest. They 

perform better than CNN at acquiring viewpoint-invariant representations and modeling part-to-whole 

relationships between entities [64]. CNN commonly uses pooling layers for the purpose of down 

sampling and abstracting features. However, it is important to note that this process can result in a 

reduction of spatial information. Capsule Networks (CapsNets) have the potential to decrease the 

necessity of pooling layers, which might be beneficial in situations where the inclusion of intricate 

features is crucial for accurate diagnosis. In certain cases, Capsule Networks (CapsNets) sometimes 

require a smaller number of parameters compared to Convolutional Neural Networks (CNNs) in order 

to attain comparable performance levels. This characteristic can result in the development of 

computationally efficient models, which is particularly significant in scenarios that demand real-time 

diagnosis or operate within limited resource contexts. CNN neglect the critical spatial link between 

simple and complex objects. Instead of the initial translational invariance, CapsNets now gain 

equivariance using a new design that mimics the human visual system, which allows them to require less 

data to achieve a more thorough generalization across various angles [65]. It has been claimed that 

Capsule Networks exhibit a reduced vulnerability to overfitting, a particularly crucial aspect when 

working with limited medical data. As the dataset size is small, this model is well suited for the 

experiment. A capsule is a set of neurons whose output predicts specific aspects of the same item. Each 

layer of a capsule neural network consists of several capsules [66]. Capsule Neural Network, also known 

as CapsNet, is a form of ANN used in machine learning systems to represent hierarchical relationships 

[67], [68]. 

The model uses a shape input_shape as input and consists of a series of convolutional and dense layers. 

The convolutional layers (conv1 and primarycaps) extract features from the input data, whereas the dense 

layers (digitcaps and output) create the core of the Capsule Network. The digitcaps layer represents the 

output capsules that convey the presence and characteristics of different classes. Calculating the output 

involves computing the square root of the sum of squared activations along the capsule dimensions. 

2.4.2. Structure of the model 

Proposed Capsule Network model, shown in figure 3. 
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Figure 3.  Proposed Capsule Network model. 

Breakdown of each layer in the capsule network model, including the layer type, output shape, and 

number of parameters: 

1. “input_1”: InputLayer with an output shape of ‘(None, 11, 1)’, indicating that the input data has 

a shape of ‘(batch_size, 11, 1)’. The None dimension represents the batch size, which can vary 

during training. 

2. “conv1d”: Conv1D layer with an output shape of ‘(None, 7, 256)’. This layer performs 

convolutional operations on the input, resulting in a feature map with a width of 7 and 256 

channels. It has 1,536 parameters. 

3. “conv1d_1”: Conv1D layer with an output shape of ‘(None, 3, 256)’. This layer performs another 

convolutional operation on the previous layer's output, reducing the width further to 3. It has 

327,936 parameters. 

4. “flatten”: Layer that flattens the output of the preceding layer into a 1D form vector. ‘(None, 

768)’. 

5. “dense”: Dense layer with an output shape of ‘(None, 256)’. This layer applies a fully connected 

operation with 256 units to the flattened input. It has 196,864 parameters. 

6. “dense_1”: Dense layer with an output shape of ‘(None, 16)’. This layer applies another fully 

connected operation, reducing the dimensionality to 16. It has 4,112 parameters. 

7. “reshape”: Reshape layer with an output shape of ‘(None, 1, 16)’. This layer reshapes the 

previous layer's output to have a shape of ‘(None, 1, 16)’. 

8. “output”: Lambda layer that applies a lambda function to compute the final output. It produces 

a form that is ‘(None, 1)’. 

 
Figure 4. Structure of the layers. 
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2.4.3. Classification with Capsule Network 

A large number of training samples are used to train the network so that it can categorize co-channel 

signals efficiently. The output of the capsule network is an eight-dimensional vector denoted by v = [νi], 

where i ∈ [1, 8] and νi ∈ (0, 1). The threshold decision function f (), represented as determines the final 

classification result. 

𝑓(𝑥) =  {
1 𝑖𝑓 𝑥 ∈   [T, 1]
0 𝑖𝑓 𝑥 ∈   [0, T]

                                                                              (1) 

Where, T is a manually set parameter for decision-making. 

2.5. Performance Evaluation Parameter 

TP, TN, FP, and FN are used to calculate the accuracy of classifiers [69]. Precision and recall contribute 

as statistical validation metrics [70]. Precision indicates the positive predictive value of the classifier. 

While recall is the percentage of positive test results, it is the ratio of precisely predicted positive 

observations to all accurately predicted positive observations [71]. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = (𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)) × 100                                                   (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) = (𝑇𝑃(𝑇𝑃 + 𝐹𝑁) × 100)                                   (3) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ((𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)) × 100                  (4) 

The ROC is a graphical representation of the performance of a classifier as thresholds increase [72]. 

Between each specificity and sensitivity value is the ROC curve [73]. The significance of ROC is 

proportional to the number of tested thresholds. F-measure is an additional statistical performance 

indicator [74]. 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = ((2 × 𝑇𝑃)/(2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁))                                 (5) 

The numbers in a confusion matrix represent the disparity between expected and actual values [75]. The 

"TN" output indicates the number of samples that were correctly identified as negative. Similarly, "TP” 

indicates the number of correctly identified positive events. As "FP" implies, the number of erroneously 

positive occurrences equals the number of falsely negative occurrences; similarly, "FN" suggests that the 

number of falsely negative occurrences equals the number of falsely positive occurrences. In the context 

of classification, precision is an essential performance metric. 

The Cohen's Kappa coefficient, also known as the Kappa score, is a statistical indicator of inter-rater 

reliability for categorical or nominal data [76]. It is typically used to assess the level of agreement 

between anticipated and real labels in machine learning and classification projects.  

𝐾𝑎𝑝𝑝𝑎 =  (𝑃𝑜 −  𝑃𝑒) / (1 −  𝑃𝑒)                                                              (6) 

Where, (i) Po is the observed agreement, which is the proportion of cases where raters or classifiers 

agreed, (ii) Pe denotes the proportion of cases in which agreement is expected by chance. 

The Kappa score has a range of -1 to 1. A value of 0 denotes agreement by chance, a value of 1 denotes 

perfect agreement, and a value of -1 denotes disagreement that exceeds chance. When comparing and 

evaluating classification models, especially when dealing with imbalanced datasets or taking the chance 

agreement into account, the Kappa score is widely used [77]. 
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MSE, RMSE, and MAE have frequently employed performance metrics used to evaluate the accuracy 

and error of prediction models. Here is a breakdown of each metric: 

a. Mean Squared Error (MSE): The average squared variation between expected and observed 

values is what the MSE calculates. The disparities between the expected and actual values are 

called squared residuals, and this calculation finds their mean. Due to the squaring procedure, 

MSE penalizes greater mistakes more severely [78]. 

b. Root Mean Squared Error (RMSE): The RMSE is an easier-to-understand metric than the MSE 

due to the fact that it shares a unit with the objective variable (the square root of MSE). The Root 

Mean Squared Error (RMSE) is used to measure how large the model's errors normally are [79]. 

c. Mean Absolute Error (MAE): The MAE is a statistical measure of how far predictions deviate 

from actual results. Due to the non-squaring of the errors, MAE is less affected by extreme 

values. The MAE provides a more concise explanation of the typical size of errors [80]. 

 

3. Result analysis 

The effectiveness of the model for diabetes identification is thoroughly examined in this section. The 

evaluation measures used in this study include MSE, RMSE, MAE, MSE, Recall, F1-Score, Overall 

Accuracy, and Kappa Score. Also given are the values for Accuracy, Precision, and Recall for each 

particular class. These measurements were used to evaluate the model's effectiveness in detecting 

diabetes. 

3.1.  Performance Metrics 

Table 1. Summarizes the Performance Metrics Obtained from this Model. 

Evaluation Metric Result 
Precision 0.94 

Recall 0.94 

F1-Score 0.94 

Class wise Precision (Class 0: 0.91, Class 1: 0.96) 

Class wise Recall (Class 0: 0.91, Class 1: 0.96) 

F1-Score (Class 0) 0.91 

F1-Score (Class 1) 0.96 

Validation Accuracy 0.94 

Validation Loss 0.39 

Overall Accuracy 0.94 

Kappa Score 0.87 

MSE 0.058 

RMSE 0.24 

MAE 0.058 

Performance Evaluation of the Classification Model: An evaluation of a classification model's 

performance is frequently done using the precision, recall, and F1-Score metrics. A balanced 

performance in accurately detecting both positive and negative cases is indicated by the acquired 

precision (0.94) and recall (0.94) values. The robustness of the model is shown by the F1-Score's (0.94) 

strong harmonic mean between precision and recall. Impressive results are also seen when class-level 

precision, recall, and F1-Score are examined for each target class. In comparison to Class 0 (positive 

cases), Class 1 (diabetes) displays somewhat higher precision (0.96) and F1-Score (0.96). This shows 

the model's effective classification between two classes and its successful identification of people with 

diabetes and normal instances. Overall Accuracy: The model's validation accuracy and overall accuracy 

of 0.94 indicate that its predictions were accurate to a significant degree. The model's validation loss is 
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0.39. This statistic offers a comprehensive analysis of the model's performance across all classes and acts 

as a trustworthy gauge of its usefulness in practical situations. Agreement and Error Analysis: The 

Kappa score was produced to assess the degree of agreement between the model's predictions and the 

ground truth labels. A Kappa value of 0.87 was attained, suggesting significant agreement that was not 

the result of random chance. This emphasizes how accurate and consistent the model's predictions are. 

Additionally, a review of error measurements, such as MSE, RMSE, and MAE, was done. The model's 

correctness is further supported by the low MSE (0.058), RMSE (0.24), and MAE (0.058) values that 

were found. These measures show little variation between the expected and actual values, demonstrating 

the accuracy of the model. 

3.2.  Confusion Matrix 

With 30 occurrences accurately classified as Class 0 and 68 cases correctly classified as Class 1, the 

diagonal of the matrix shows the correctly anticipated classes. However, three instances from Class 0 

and three examples from Class 1 were incorrectly categorized as being in the same class. With a few 

misclassifications, the model performs well overall in properly categorizing examples from both Classes 

0 and 1. It shows a higher accuracy in identifying Class 1 instances, as evident from the larger number 

of correct predictions for this class. This interpretation provides insights into the model's performance in 

differentiating between the two classes and highlights areas where misclassifications occurred. The 

confusion matrix for the classification results of the model is as shown in figure 5. 

 

Figure 5. Confusion Matrix. 

3.3.  Receiver Operating Characteristic (ROC) 

The ROC curve resulted in an AUC value of 0.93, indicating the model's robust ability to differentiate 

between positive and negative instances in the diabetic detection task. The AUC value, which falls within 

the range of 0 to 1, provides a comprehensive evaluation of the model's performance across diverse 

classification thresholds. By achieving an AUC of 0.93, the model demonstrates a notable level of 

accuracy and effectiveness in accurately prioritizing and categorizing instances. A higher AUC value 

implies an enhanced capability to correctly classify instances across different thresholds. 
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Figure 6.  ROC Curve. 

4. Discussion 

The precise and well-timed detection of diabetes is of supreme importance for effective disease 

management and treatment. Conventional methods of diabetes detection often rely on physical 

examination and individual interpretation, which can be susceptible to humanoid error and variability. 

Amidst recent developments, machine learning techniques have displayed potential in improving the 

accuracy and efficiency of diagnosing diseases as critical as diabetes. This work focuses on the 

deployment of the Fisher score feature selection approach in combination with capsule networks for 

diabetes detection. The Fisher score method, a widely used feature selection technique, aims to ascertain 

the most relevant features that contribute drastically to the classification task. By incorporating this 

method, we pinpointed the most pertinent features related to diabetes detection, facilitating the 

generation of a more precise classifier. 

The capsule network model, a relatively new deep learning architecture, was employed to leverage the 

selected features for diabetes classification. The accuracy, recall, F1 score, and class-wise precision and 

recall metrics were thoroughly investigated to determine the efficacy of the suggested strategy. The 

above average precision, recall, and F1 scores obtained indicate that the combination of Fisher score 

feature selection and capsule networks leads to accurate and reliable diabetes detection. One notable 

finding of this work is the high accuracy and recall values achieved by the proposed architecture. The 

high accuracy value depicts that the model efficaciously classified a significant proportion of both 

positive and negative cases of diabetes. This is vital in curtailing the risk of misdiagnosis, ensuring that 

patients receive suitable treatment and care. The class-wise precision and recall values further accentuate 

the proposed method’ ability to suitably place occurrences of both classes, stressing its robustness in 

handling diverse cases of diabetes. 

The kappa score, a statistical measure of agreement, gave supplementary evidence of the proposed 

method’s performance. The high kappa score obtained (0.87) indicates substantial agreement between 

the algorithm's predictions and the actual diabetes labels, further strengthening the reliability and 

effectiveness of the proposed approach. The MSE, RMSE, and MAE values were calculated to assess 

the model's predictive accuracy. The small values obtained for these metrics (MSE: 0.058, RMSE: 0.24, 

MAE: 0.058) suggest that the proposed model's predictions are adjacent to the true values, demonstrating 

its capability to accurately estimate presence of diabetes. Table 2, comprises the summary of the previous 

proposed models and their performance evaluation metrics score. 
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Table 2. Comparison with Latest Contemporary Findings 

Previous 

Works 

Feature Selection 

Method 
Model Used 

Best Performing 

Model 
Performance Evaluation Metrics Score 

[14] Kernel entropy 

component analysis 

RF, LR, GNB, SVM, 

LDA, KNN, EGB, DT 

RF Accuracy = 96.75%, Precision = 99.64%, 

ROC value = 99% 

[20] - DT, LR, DA, SVM, 

KNN, EN 

LR Accuracy = 77.9% 

[23] Greedy Stepwise 

Search 

MLP, KM, LR, RF MLP Accuracy = 85.153% 

[24] - SVM, KNN, GB, DT, 

RD, LR 

RF Accuracy = 84%, Precision = 83%, Recall 

= 76%, F1-score = 80%, ROC/AUC Score 

= 80% 

[25] - GB, AB, XGB, NN, 

SVM, RF, SNN, 

SSVM, SRF 

AB, RF, SVM Accuracy = 98%, Recall = 98%, 

F1-Score = 98% 

[28] - DT DT Accuracy = 78.1768% 

[29] Scatter Matrix DT, ID3 ID3 Accuracy = 80% 

[33] Recursive Feature 

Elimination Genetic 

Algorithm, Burota 

Package. 

DT DT Accuracy = 74.48% 

[34] - RF, C4.5, RT, SC, BT, 

SVM 

RF Error Rate = 0.21 

[35] - RF RF Sensitivity = 91.40%, Accuracy = 94.37 

[36] Minimal Redundancy 

Maximal Relevance 

GB, SVM, AB, RF RF Accuracy = 99.35% 

[37] - DT, SVM, NB NB Accuracy = 76.30%, Precision = 75.9%, 

Recall = 76.3%, F-Measure = 76%, 

ROC Score = 81.9% 

[39] Genetic Algorithm NB NB Accuracy = 88.65% 

[39] Restricted Boltzmann 

machine 

DT DT Accuracy = 80%, Kappa score = 0.5046, 

MAE = 0.35.71, RMSE = 0.434, 

RAE = 81.11%, RRSE = 92.65%, 

[40] - NB, KNN, LR, RF KNN Accuracy = 78.57%, Precision = 87%, 

Specificity = 72% 

[41] Variational 

Autoencoder, Sparse 

Autoencoder 

CNN CNN Accuracy = 92.37% 

[42] Pearson’s Correlation 

Analysis 

GNB, LSVM, RF LSVM Accuracy = 78.39%, 

Precision = 71.55% 

[43] Correlation-Based 

Feature Selection 

ESVM, DNN ESVM Accuracy = 98.45%, 

RMSE = 0.568257571, 

R² = 0. 476923077, 

MAE = 0. 322916667, 

MSE = 0. 322916667 

[44] - LR, NN, DJ, DT DT Accuracy = 80.2%, Precision = 73%, 

Recall = 62.9%, F1-Score = 67.6% 

[45] -  LR, NB, KNN, DT, 

RF, NN 

NN Accuracy = 99.15%, 

F1-Score = 99.63%, 

Precision = 99.27%, Recall = 100%, 

Specificity = 98.81% 

[46] Augmented Vector 

Foot 

LSTM, 1DCNN, 

DECG, T, CNN16 

1DCNN Accuracy = 95.03% 

[47] -  NB, LR, RF RF Accuracy = 99% Precision = 99%, 

Recall = 99%, F-Measure = 98% 
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5. Conclusion 

The research involves a comprehensive analysis of the Fisher score method to classify the most 

informative features for diabetes detection. These curated features are then employed to train a capsule 

network model, which is assessed using a dataset encompassing clinical features and subsequent diabetes 

labels. To determine the effectiveness of the suggested method, performance evaluation criteria such as 

accuracy, precision, recall, and F1 score are thoroughly studied. The results reveal that the fusion of 

Fisher score feature selection and capsule networks generates promising results in diabetes detection, as 

evidenced by the high accuracy and recall values. Furthermore, the algorithm correctly classifies both 

positive and negative cases of diabetes, dropping the possibility of misdiagnosis. By exploiting the Fisher 

score feature selection method and capsule networks, this work contributes to advancing diabetes 

detection and improving the accuracy and efficiency of diabetes detection. 

The outcomes of this work demonstrate that the amalgamation of Fisher score feature selection and 

capsule networks holds great potential for augmenting diabetes detection. The proposed method 

effectively captures the relevant information necessary for accurate classification, leading to improved 

diagnostic accuracy and efficiency. The findings of this work augment the improvement of diabetes 

detection methods, proposing potential for individualized treatment options and better patient outcomes. 

While the outcomes of this work are encouraging, further reconnaissance and refinement of these 

approaches is warranted. Future research could reconnoiter the generalizability of the proposed 

methodology by validating it with larger and more diverse datasets. The integration of other relevant 

clinical features and the consideration of external factors, such as way of life and genetic evidence, could 

further uplift the algorithm's performance. Continued expansion and improvement of these procedures 

have the capability to meaningfully improve diabetes diagnosis, ultimately leading to more personalized 

and effective treatment strategies for individuals with diabetes. 
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