
Available online at http://icsejournal.com/index.php/JCSE
Journal of Computer Science an Engineering (JCSE)

e-ISSN 2721-0251
 Vol. 5, No. 1, February 2024, pp. 46-63

46
http://dx.doi.org/10.36596/jcse.v5i1.789

Android Apps Vulnerability Detection with Static and

Dynamic Analysis Approach using MOBSF

Sabrina Uhti Kusreynada1, Azhari Shouni Barkah2

1,2Department of Information Technology, Faculty of Computer Science, Universitas Amikom Purwokerto,
Purwokerto, Indonesia
uhti1811@gmail.com*,
* corresponding author

A R T I C L E I N F O

ABSTRACT

Article History:

Received January 25, 2023
Revised February 26, 2024

Accepted February 28, 2024

Ensuring the security of Android applications is paramount, especially for apps

like Mobile JKN, launched by the Social Security Agency on Health “BPJS

Kesehatan” under the Ministry of Health Republic Indonesia, which contain

sensitive participant data. Such information is often targeted by cybercriminals

seeking personal gain through data theft by exploiting security vulnerabilities

within the application. To address these risks, a thorough analysis was

conducted to detect security loopholes in the Mobile JKN application. The

study used the Mobile Security Framework (MOBSF) tools and involved static

and dynamic analyses. Despite the application’s implementation of secure SSL

Pinning and detection of rooted devices, the static analysis revealed potential

security loopholes, including dangerous permission access, weak

cryptographic methods, and vulnerable hardcoded secrets. Moreover, the

application was found vulnerable to Janus, SQL Injection, and padding oracle

attacks. While the dynamic analysis showed satisfactory implementation of SSL

Pinning and no performance degradation, it also revealed that root detection

was lacking, and debugger connections were not detected while the application

was running. These findings emphasize the critical need for immediate security

enhancements in the Mobile JKN application.

Keywords:

Mobile JKN Security
Cyber Threats in Healthcare

Application Vulnerabilities

SSL Pinning Analysis

Data Privacy Concerns

Correspondence:

E-mail: uhti1811@gmail.com

1. Introduction

Technological advancements have significantly increased the number of mobile applications in

Indonesia. The ease with which these apps have simplified daily tasks has also sparked interest in

their use. A diverse array of mobile applications, spanning social networking, e-government, and e-

commerce, is now readily accessible. According to a report from Data.ai, in 2022, the average

Indonesian spent 5.7 hours per day using mobile applications, marking a 5.56% increase from the

previous year [1]. Along with the increasing use of mobile applications, there has also been an

increase in the number of applications launched. Currently, the Android and iOS platforms have 21

million applications, with 77% being for Android. In Indonesia, more than 13,000 application

downloads occurred every minute in 2021 [2]. The availability of various applications has driven

user interest in utilizing them, resulting in increased efficiency across multiple sectors, including

healthcare.

Public services in the healthcare sector are efforts undertaken by the government or other public

institutions to fulfill the community’s fundamental rights to healthcare. In carrying out its duties and

responsibilities, the government must improve the effectiveness and efficiency of public services for

the community [3]. One step the Indonesian government can take is to utilize information technology,

particularly E-government. E-government is a system of information technology created by the

government to improve public services by providing options for the public to access public

information easily [4]. One implementation of E-government in the healthcare sector is Mobile JKN,

the latest innovation from BPJS Kesehatan. This application facilitates online registration and

provides access to information for participants. With over 10 million downloads on the Google Play

mailto:uhti1811@gmail.com*

Journal of Computer Science an Engineering (JCSE)
Vol. 5, No. 1, February 2024, pp. 46-63

e-ISSN 2721-0251

47
http://dx.doi.org/10.36596/jcse.v5i1.789

Store, this application allows users to view bills, obtain information about healthcare facilities, and

submit suggestions or complaints [5].

Despite the continuous advancement of technology, data security poses a challenge that needs to be

addressed. Threats such as data theft, malware attacks, or privacy breaches can jeopardize sensitive

information stored within applications. In 2021, 279 million personal data records of Indonesian

citizens who were participants of BPJS Kesehatan were suspected of having been leaked and sold

online on the raid forum website, possibly due to application hacking [6]. Research by Amalia et al.

found that the BPJS Kesehatan application did not use two-factor authentication, indicating

weaknesses in its security level [7]. Therefore, evaluation with security analysis is necessary to detect

vulnerabilities in the application.

According to Ibrar et al., there are three tools capable of automatically analyzing the security of

mobile applications, namely MobSF (Mobile Security Framework), Androbugs Framework, and

QARK (Quick Android Review Kit) [8]. However, QARK and AndroBugs Framework do not use

specific approaches as a basis for testing application security [9]. Androbugs Framework focuses

only on static analysis, while QARK focuses on dynamic analysis. MobSF, which can perform static

and dynamic analysis, is a better choice.

Static analysis is used to check the application source code without having to run or test the

application directly. Dynamic analysis examines the application while it is running. Because MobSF

is open source, many researchers use it extensively to test application vulnerabilities [11]. Static

analysis using MobSF has a high success rate, with an actual positive value of up to 97% [12].

Based on research conducted by Tansen and Nurdiarto, they analyzed the Bouncing Golf and Riltok

Banking Trojan malware to observe the characteristics and behavior of these malware [13]. This

research is important due to the proliferation of malware attacks by malicious application developers

on the Android platform. Testing was conducted using static and dynamic analysis using the Mobile

Security Framework (MobSF). The results showed that Bouncing Golf can steal information and

control infected Android devices. Riltok Banking Trojan can also take control of smartphones to

steal credit card information through phishing methods.

This study aims to conduct a security analysis of the Android-based BPJS Kesehatan application,

Mobile JKN. This application contains sensitive information such as identity, medical history, bank

account numbers, and other personal documents, making it an easy target for cyberattacks. This

application will be analyzed statically and dynamically using the Mobile Security Framework. In

static analysis, evaluations will be conducted on dangerous permissions, certificate analysis, manifest

analysis, code analysis, and malware domain checks. Meanwhile, in dynamic analysis, evaluations

will be conducted on API monitoring, SSL pinning bypass, root detection bypass, and debugger

checker bypass.

2. Methods

2.1. Research Flow

The research flow represents a systematic collection and analysis process to address existing issues.

In Figure 1, the initial stage of this research is observed to commence with problem identification,

revealing a security gap concerning user data in Mobile JKN. Subsequently, a literature review is

conducted, involving the search and comprehension of literature sources related to information

security testing. Following the literature review, the next step is gathering tools and materials for

application security testing. The subsequent process entails conducting security tests on Mobile JKN

using the Mobile Security Framework to perform static and dynamic analyses. After completing tests

using the Mobile Security Framework, the output will be a report. The final research stage involves

concluding the application testing results.

Journal of Computer Science an Engineering (JCSE)
Vol. 5, No. 1, February 2024, pp. 46-63

e-ISSN 2721-0251

48
http://dx.doi.org/10.36596/jcse.v5i1.789

Figure 1. Research Flow

2.2. Mobile Security Framework

The Mobile Security Framework is a versatile tool designed to enhance mobile app security through

its ability to conduct both static and dynamic analyses[14]. Static analysis involves examining an

application’s code and structure without executing it, aiming to identify potential vulnerabilities or

security weaknesses. On the other hand, dynamic analysis consists of executing the application in a

controlled environment to observe its behavior and identify security issues that may arise during

runtime. This dual approach enables the framework to provide comprehensive insights into the

security posture of mobile applications, helping developers and security professionals mitigate

potential risks effectively.

Static Analyses

The Mobile Security Framework static analysis workflow consists of 3 processes: input, static

analysis, and output, as seen in Figure 2. Input: The first process is to input data. In this research,

the data input stage involves inserting APK extension application files. The Mobile Security

Framework will analyze these files. Static Analysis: The static analysis in the Mobile Security

Framework (MobSF) is used to identify potential issues in the analyzed files. This includes detecting

insecure permissions and configurations that could lead to vulnerabilities, finding malicious code,

and discovering changes in hidden file storage locations. In this static analysis stage, parameters are

used to perform security tests on applications, including (i) Dangerous permissions are used to detect

permissions that are dangerous to mobile devices. These permissions are considered dangerous

because they can endanger the privacy or security of users if used irresponsibly. (ii) Certificate

analysis in MobSF is used to check the authenticity and reliability of certificates used in the

application. (iii) Manifest analysis performed by the Mobile Security Framework (MobSF) is the

process of checking and evaluating the AndroidManifest.xml file in the Android application. (iv)

Code Analysis checks and evaluates source code to identify potential defects, ensure compliance

with coding standards, and improve software quality and security. This involves analyzing code

changes, mapping them to programming language types, and using code analysis tools and analysis

rules to execute analysis and obtain results. (v) Domain malware check checks and verifies whether

the domains to be accessed are indicated as malware sources. Output: Using the Mobile Security

Framework tool will provide detailed analysis results as a report. The report presents the results of

the tests conducted using MobSF.

Journal of Computer Science an Engineering (JCSE)
Vol. 5, No. 1, February 2024, pp. 46-63

e-ISSN 2721-0251

49
http://dx.doi.org/10.36596/jcse.v5i1.789

Figure 2. Workflow of Static Analysis

Dynamis Analyses

The workflow of dynamic analysis in the Mobile Security Framework consists of three processes:

input, dynamic analysis, and output, as depicted in Figure 3. Input: The first step is data input. In

this study, the data input stage involves inserting APK files. These files will undergo analysis by the

Mobile Security Framework. Dynamic Analysis: The Mobile Security Framework (MobSF)

inspects and analyzes the behavior and security of active applications or systems. This method

involves executing the application or system in a controlled environment to examine how the

application interacts with its environment and whether there are vulnerabilities that attackers can

exploit. In this dynamic analysis stage, there are parameters used to test the security of the

application, including the following: (i) API monitoring, which is the process of monitoring the APIs

used in a system or application to ensure their availability, performance, and reliability in the

production environment. API monitoring ensures the availability, performance, and reliability of

APIs in the production environment. (ii) SSL Pinning Bypass can be used to identify and evaluate

potential security vulnerabilities in SSL pinning implementations. Security testing can exploit

vulnerabilities in the application’s SSL/TLS certificate validation by bypassing SSL pinning. (iii)

Root Detection Bypass, which can be used to identify vulnerabilities in the root detection

mechanisms used by the application. By bypassing root detection, security testing can evaluate

potential security vulnerabilities related to using rooted devices. (iv) Debugger Checker Bypass,

which can be used to identify vulnerabilities in the debugger check mechanisms used by the

application. By bypassing this, security testing can evaluate potential vulnerabilities related to using

debuggers in the application. Output: Using the Mobile Security Framework tool will provide

detailed analysis results in a report that includes information about the dynamic analysis results. The

report presents the results of the tests performed using MobSF.

Figure 3. Workflow of Dynamic Analysis

3. Results and Discussion
The Mobile JKN application testing process is conducted using the Mobile Security Framework,

which begins with static analysis to identify security vulnerabilities in the source code, followed by

dynamic analysis by running the application on an emulator device. In static analysis, the testing

parameters include Dangerous permission, Certificate analysis, Manifest analysis, Code Analysis,

and Malware Domain Check. For dynamic analysis, the testing parameters include API Monitoring,

Journal of Computer Science an Engineering (JCSE)
Vol. 5, No. 1, February 2024, pp. 46-63

e-ISSN 2721-0251

50
http://dx.doi.org/10.36596/jcse.v5i1.789

SSL Pinning Bypass, Root Detection Bypass, and Debugger Checker Bypass. The following are the

results of the static and dynamic analysis of the Mobile JKN application:

3.1. Static Analysis

Static analysis is an approach used to detect and fix poor or vulnerable code by examining code

listings, test results, or other documentation to identify errors, violations of development standards,

or other issues to enhance system and software security. Below are the findings from static analysis

using MobSF, including:

Dangerous Permission

The dangerous permissions testing parameter detects permissions that pose a dangerous risk in the

Mobile JKN application. Access permissions in the application can be a security vulnerability if not

managed properly or if abused. Here are the dangerous permissions in the Mobile JKN application

detected by MobSF, including:

Location Access

Figure 5 shows that the Mobile JKN application has two dangerous permissions related to location

access. These permissions allow accurate device location information to be obtained via cellular

networks or Wi-Fi using GPS technology and other methods. Location access permissions are

considered dangerous if the application requests them without clear justification or exploits them in

ways that violate user privacy. With location access permissions in the Mobile JKN application, there

is a potential security risk, including health information theft. Furthermore, user location data can be

used for unrelated purposes, such as advertising or marketing analysis, leading to data misuse and

violating user privacy.

Figure 5. Location Access in the Mobile JKN Application

Camera Access

In Figure 6, camera access permission is categorized as a dangerous permission. The image above

displays the permissions the Android application requires to access the device’s camera. This

permission enables the application to utilize the camera to capture photos or record videos through

the user’s device, potentially affecting the user’s privacy. The camera access permission in Mobile

JKN could be exploited by unauthorized parties for camera eavesdropping.

Figure 6. Camera Access in the Mobile JKN Application

Storage Data Reading

In Figure 7, the Mobile JKN application has access to external storage on the user’s device. This

permission allows the application to read data such as images, videos, audio files, or other documents

stored by the user in the device’s external storage.

Figure 7. Data Storage Reading Access

Audio Recording Access

The Mobile JKN application has access to audio recording, as shown in Figure 8. This permission

allows the application to request access to record audio using the user’s device microphone. This

Journal of Computer Science an Engineering (JCSE)
Vol. 5, No. 1, February 2024, pp. 46-63

e-ISSN 2721-0251

51
http://dx.doi.org/10.36596/jcse.v5i1.789

permission is used by various applications and systems to enable features such as voice recording,

voice calls, and audio-based communication.

Figure 8. Audio Recording Access in the Mobile JKN Application

Data Writing Access

In addition to reading data on the user’s device, the Mobile JKN application can also write data to

the user’s external storage, as shown in Figure 9. This permission allows the application to read,

modify, and delete content in the user’s external storage. To address dangerous access permissions

in the application, ensure that it only requests and uses permissions necessary for its functionality

and protect user privacy. Developers can take steps to address dangerous access permissions,

including implementing the principle of least privilege by only requesting permissions necessary to

perform the application’s functionality. Additionally, use runtime permissions in the application,

allowing users to grant access permissions only when needed.

Figure 9. Writing Access to External Storage on User’s Device

Certificate Analysis

Certificate analysis in MobSF is used to verify the authenticity and reliability of certificates used in

the application. In this test, vulnerabilities were detected with a severity warning category. Figure 10

shows that the certificate analysis in the Mobile JKN application falls into the warning severity

category. In this analysis, it was found that the Mobile JKN application is vulnerable to the Janus

vulnerability. Janus is an attack that allows an attacker to view or gain access to sensitive data while

maintaining legitimate or normal-looking access. In this case, the attacker can manipulate data sent

or received by the system, often using encryption at higher or lower layers, such as communication

protocols or data transmission. This way, attackers can inject malicious or damaging data into

communications without being detected by the system or user.

Figure 10. Certificate Analysis in the Mobile JKN Application

Figure 11 shows the signature scheme used by Mobile JKN to secure the application. In the findings

above, the Mobile JKN application is signed with signature schemes v1 and v2, making it vulnerable

to the Janus vulnerability in Android versions 5.0 to 8.0. However, the Janus vulnerability may still

exist even if the application uses signature schemes v1, v2, and v3. This is because the vulnerability

lies in the v1 signature scheme. So, even when combined with v2 or v3 signature schemes, it may

not fully address the security issue.

Figure 11. Signature Scheme Used by Mobile JKN

Journal of Computer Science an Engineering (JCSE)
Vol. 5, No. 1, February 2024, pp. 46-63

e-ISSN 2721-0251

52
http://dx.doi.org/10.36596/jcse.v5i1.789

To address the Janus attack and protect the application from such security risks, developers can take

steps to use a stronger signature scheme. They can use newer APK signature schemes, such as v2 or

v3, with more vital security features than v1. The v2 and v3 schemes allow for multi-layered signing,

meaning they can sign the APK with multiple private keys. This can help in more flexible

development management and maintaining signature security. Additionally, the v2 or v3 schemes

can prevent modification or insertion of undetected malicious code.

Manifest Analysis

The Manifest analysis conducted by the Mobile Security Framework (MobSF) inspects and evaluates

the AndroidManifest.xml file in an Android application. In this test, several broadcast receivers and

services were found to fall into the warning severity category, including:

Broadcast Receiver

A Broadcast Receiver is a component in the Android platform that allows applications to listen for

and respond to events or messages sent by the system or other applications. It enables applications

to respond to changes in the system environment or user interactions with the device, as seen in

Figure 12.

Figure 12. Warning Severity Receiver in the application

In Figure 12, four broadcast receivers are found in the Mobile JKN application. These broadcast

receivers can exchange data with other applications on the user’s device, making them accessible to

any application. Permissions protect these broadcast receivers, but these permissions are not defined

in the application. As a result, the level of protection from these permissions needs to be checked

where the permissions are defined. In this case, there is a potential security risk because the shared

Broadcast Receiver can be accessed by foreign applications that may have malicious intent. To

mitigate this risk, developers can take a series of security measures to help protect the application

from potential threats and security issues, such as using “LocalBroadcastManager” to limit broadcast

reception only within the application. Additionally, make the appropriate Broadcast Receiver

declarations in the application’s manifest file by ensuring that broadcast reception only occurs when

necessary.

Service in the Mobile JKN Application

Figure 13 shows a service in the Mobile JKN application categorized as warning severity. A Service

is a component in an Android application that can run in the background without direct user

interaction. This service can perform specific tasks, such as fetching data from the internet,

processing information, or performing other actions. In this case, a service in the application is shared

Journal of Computer Science an Engineering (JCSE)
Vol. 5, No. 1, February 2024, pp. 46-63

e-ISSN 2721-0251

53
http://dx.doi.org/10.36596/jcse.v5i1.789

with other applications on the same device. This means that other applications on the device can

access this service. Based on the figure above, this service is protected by permissions that must be

held by other applications that want to access it. These permissions prevent arbitrary applications

from interacting with this service. However, these permissions are not defined within the application.

In other words, the application does not have these permissions in its manifest file.

Suppose the permissions required by the component are not defined. In that case, it can lead to

security issues that allow other applications or third parties to access features or resources quickly

they should not have access to. To address security issues related to permissions not defined in an

Android application, developers can take steps to declare the required permissions by ensuring that

the permissions needed for the component, such as Activity, Service, or Broadcast Receiver, have

been declared in the manifest file.

Figure 13. Warning Severity Service in the Mobile JKN Application

Code Analysis

Analysis of the code of the Mobile JKN application using MobSF revealed the results of the

application testing, including :

App Log

Figure 14 shows the Mobile JKN application logs information. App logging is a record of events and

actions that occur within an application and is used for various purposes, such as troubleshooting,

user action identification, and system monitoring. This app logging can store sensitive information,

so if this data falls into the wrong hands, it can lead to privacy breaches and security issues.

Figure 14. Application Logging in Mobile JKN

SQLite Database

Figure 15 shows that the Mobile JKN application is detected to be using SQLite Database to store

and manage information. SQLite database is a lightweight, self-contained relational database

management system often used in desktop and mobile applications. In the figure above, the Mobile

JKN application executes raw SQL queries, meaning it sends SQL queries directly to the database

without using protection mechanisms or abstraction layers. As a result, user input that is not trusted

can lead to SQL Injection attacks. SQL Injection is an attack that allows an attacker to inject

malicious SQL code into queries executed by the database, which can damage or retrieve data from

the database.

Journal of Computer Science an Engineering (JCSE)
Vol. 5, No. 1, February 2024, pp. 46-63

e-ISSN 2721-0251

54
http://dx.doi.org/10.36596/jcse.v5i1.789

Figure 15. The Mobile JKN Application Uses SQLite Database

Figure 16 illustrates the process of a SQL injection attack on the application. It depicts how an

attacker identifies a security vulnerability in the application’s input/login form and inputs a malicious

SQL query. The database then validates and executes the query, granting the attacker access to view

and retrieve data or act as a site administrator. To prevent SQL injection attacks, application

developers can employ several strategies, such as using parameterized statements, validating user

input, using prepared statements through the database API, escaping special characters, using stored

procedures, and applying data sanitization.

Figure 16. How SQL Injection Works

Hardcoded Secrets

Figure 17 shows that the Mobile JKN application allows for loading files containing encoded

sensitive information such as usernames, passwords, keys, and others. Hardcoded secrets refer to

embedding confidential information, such as passwords, API keys, or other authentication

information, directly into the application source code or configuration. Using hardcoded secrets can

lead to serious security issues. If the code is leaked, copied, or shared, unauthorized parties can easily

access sensitive information.

Figure 17. Hardcoded Secrets in the Mobile JKN Application

Figure 18 shows possible hardcoded secrets in the Mobile JKN application detected by the Mobile

Security Framework (MobSF). Figure 18 indicates that the configuration may contain hardcoded

secrets. The figure above shows values found in the configuration file, which may contain sensitive

Journal of Computer Science an Engineering (JCSE)
Vol. 5, No. 1, February 2024, pp. 46-63

e-ISSN 2721-0251

55
http://dx.doi.org/10.36596/jcse.v5i1.789

information such as URLs, API keys, or other information that should not be publicly visible. To

address potential hardcoded secrets in the application, developers can take several steps, such as

using environment variables. Using environment variables is a highly recommended practice in

software development for storing sensitive information and configuration that differs between

development and production environments. Use a secure credential management system to store and

manage sensitive information.

Figure 18. Possible Hardcoded Secrets in Mobile JKN

Weak Crypto

Weak cryptography is the implementation of cryptographic techniques that are not strong or secure

enough to protect data and communication from existing attacks and threats.

SHA-1

Figure 19 shows that the Mobile JKN application is detected to have weak cryptography, namely

using SHA-1. SHA-1 is a weak hash function known to have hash collisions, making it vulnerable

to differential cryptanalysis. This vulnerability makes it easier for attackers to create collision attacks,

creating two different inputs that produce the same hash value, which can be used for malicious

purposes[17].

Figure 19. The Use of SHA-1 in the Mobile JKN Application

In Figure 20, this code snippet uses the SHA-1 hash algorithm to generate a hash value from the

given byte array. To avoid sophisticated cryptographic attacks, developers must use a strong hash

function. Using the SHA-256 cryptographic hash function can provide an adequate level of security.

SHA-256 is a well-known cryptographic hash algorithm widely used in many security applications

[18].

Figure 20. Code Using SHA-1

Random Number Generator

Figure 21 shows that the Mobile JKN application is detected to use an insecure random number

generator. An insecure random number generator can lead to serious security issues in an application

or system. Attackers can exploit the predictability of an insecure random number generator to predict

the path or behavior of the system, opening up opportunities for sophisticated attacks. Some attacks,

such as brute force or guessing attacks, can increase the chances of success if an insecure random

number generator is used.

Journal of Computer Science an Engineering (JCSE)
Vol. 5, No. 1, February 2024, pp. 46-63

e-ISSN 2721-0251

56
http://dx.doi.org/10.36596/jcse.v5i1.789

Figure 21. Insecure Random Number Generator

Figure 22 shows the use of an insecure random number generator in the Mobile JKN application. It

is using the java.until.Random code is insufficient for cryptographic purposes or applications

requiring high security. To create solid and secure random numbers, use java.security.SecureRandom

for application security purposes. SecureRandom uses entropy sources from the operating system

and algorithms designed to generate random numbers that are very difficult to predict.

Figure 22. Code Using Random Number Generator

CBC Encryption Mode

Figure 23 shows that the Mobile JKN application uses the CBC (Cipher Block Chaining) encryption

mode with PKCS5/PKCS7 Padding. CBC encryption mode involves encrypting data block by block

for security. PKCS5/PKCS7 Padding is a technique used to ensure that the encrypted data has a

length suitable for the block size used by the encryption algorithm. However, this configuration is

vulnerable to padding oracle attacks. This vulnerability arises due to encryption and padding

operations that may result in security weaknesses. A padding oracle attack is a type of cryptographic

attack that exploits the decryption process’s behavior when handling invalid or incorrect padding in

the ciphertext. This attack leverages information from the system’s response to specific ciphertexts

associated with padding errors. It is important to ensure correct and secure implementation of

encryption modes and padding to avoid padding oracle attacks. Stronger encryption methods such as

Authenticated Encryption with Associated Data (AEAD) can be considered for application security.

Figure 23. CBC Encryption Mode with PKCS5/PKCS7 Padding

SSL Pinning

Based on Figure 24, the Mobile JKN application uses SSL (Secure Socket Layer) certificate pinning

to detect or prevent Man-in-the-Middle (MITM) attacks on secure communication channels. A Man-

in-the-Middle (MITM) attack is a network attack aimed at violating the confidentiality and integrity

of user data. This attack exploits vulnerabilities in the network infrastructure to intercept and

manipulate data in transit. By using an SSL certificate, MITM attacks can be detected because

changes or modifications to the SSL connection will result in a mismatch in the certificate received

by the client.

Journal of Computer Science an Engineering (JCSE)
Vol. 5, No. 1, February 2024, pp. 46-63

e-ISSN 2721-0251

57
http://dx.doi.org/10.36596/jcse.v5i1.789

Figure 24. SSL Pinning in Mobile JKN

Figure 25 shows that the code attempts to obtain the TrustManager related to SSL/TLS trust

management, specifically X509TrustManager, which is used in configuring security connections.

Figure 25. The code in o/k0/e.java

Root Detection

Figure 26 shows that the Mobile JKN application may be able to detect whether the device running

the application has been rooted. Rooting removes security restrictions imposed by the device

manufacturer or operating system provider. This gives users higher access to the operating system

and device components, allowing them to perform actions that are not accessible to non-rooted users,

such as uninstalling system apps, modifying the operating system, and installing apps that require

higher access.

Figure 26. Root detection on the Mobile JKN application

WebView

The WebView is a component in Android applications that allows for rendering web content within

the application itself without redirecting the user to a web browser. The test results in Figure 27

indicate that the implemented WebView is insecure. This means that if user-controlled code is

executed within the WebView, it poses a critical security vulnerability. If users can input or control

code within the WebView, attackers could exploit this to run malicious code, conduct hacking

activities, steal sensitive information, or disrupt the application.

Figure 27. The WebView in Mobile JKN

Journal of Computer Science an Engineering (JCSE)
Vol. 5, No. 1, February 2024, pp. 46-63

e-ISSN 2721-0251

58
http://dx.doi.org/10.36596/jcse.v5i1.789

Aside from using an insecure WebView, the Mobile JKN application allows remote debugging on

the WebView component. Figure 28 shows that the Mobile JKN application enables remote

WebView debugging. Developers or security researchers can connect to the WebView from their

device or computer externally to view, analyze, and troubleshoot HTML, JavaScript, CSS, and other

web content displayed in the WebView. Although Remote WebView debugging is very useful for

development and troubleshooting, it also has potential risks if enabled on applications released to the

public or in a production environment. Enabling remote debugging can provide access to sensitive

code and content in the application, which attackers can exploit if they manage to access it.

Figure 28. Remote WebView Debugging in the Mobile JKN application

Figure 29 shows that the Mobile JKN application enables remote debugging, which can pose a

security risk. In developing applications intended for release, it is highly recommended to ensure that

Remote WebView debugging is disabled by setting the option

WebView.setWebContentsDebuggingEnabled(false) on the WebView in the application code.

Figure 29. The code enabling remote debugging

Domain Malware Check

In static analysis, there is a check on the domain in the Mobile JKN application. The Malware

Domain Check provides information about possible malware threats, vulnerabilities, or other

malicious activities associated with the domain being checked. This helps identify and address

security risks related to that domain. The results of the static analysis of the malware domain check

are shown in Table 1.

Table 1. Malware Domain Check in the Mobile JKN application

Domain Status
192.168.2.47 ok

aomedia.org ok

api.flutter.dev ok

api.onesignal.com ok

api.whatsapp.com ok

api3.qiscus.com ok

apijkn.bpjs-kesehatan.go.id ok

app-measurement.com ok

developer.android.com ok

developer.apple.com ok

dvlp.bpjs-kesehatan.go.id ok

ejkn.bpjs-kesehatan.go.id ok

exoplayer.dev ok

flutter.dev ok

github.com ok

goo.gl ok

journeyapps.com ok

mobilejknflutter-default-rtdb.firebaseio.com ok

ns.adobe.com ok

pagead2.googlesyndication.com ok

play.google.com ok

qc2.bpjs-kesehatan.go.id ok

Journal of Computer Science an Engineering (JCSE)
Vol. 5, No. 1, February 2024, pp. 46-63

e-ISSN 2721-0251

59
http://dx.doi.org/10.36596/jcse.v5i1.789

Domain Status
realtime-lb.qiscus.com ok

schemas.android.com ok

schemas.microsoft.com ok

sipp.bpjs-kesehatan.go.id ok

webskrining.bpjs-kesehatan.go.id ok

www.example.com ok

www.google.com ok

www.ibm.com ok

www.w3.org ok

Table 1. lists domains in the Mobile JKN application detected by MobSF. All domains detected by

MobSF have an OK status, and no security potential has been detected. Therefore, the list of domains

in the Mobile JKN application falls into the good category.

3.2. Dynamic analysis

Dynamic analysis is a technique used to inspect an application directly while it is running. In the

security testing of the Mobile JKN application, the output results of dynamic analysis using MobSF

with the testing parameters of API Monitoring, SSL Pinning Bypass, Root Detection Bypass, and

Debugger Checker Bypass are displayed.

API Monitoring

Application Programming Interface (API) Monitoring refers to collecting and examining data related

to the functionality of an API, which is responsible for enabling communication between various

software applications. The goal of this process is to identify the impact experienced by users when

leveraging the API. Implementing an application that utilizes services and libraries in its

development can affect the application’s overall performance. The API Monitoring process examines

several activities within the application, as observed in the testing conducted on the Mobile JKN

application using mobile security frameworks. The test results indicate no evidence of performance

weaknesses in the application programming interface of the Mobile JKN application. Therefore, it

can be concluded that the API monitoring process is crucial to ensuring smooth application

functionality.

SSL Pinning Bypass

SSL Pinning Bypass is used to validate the SSL certificate from the target server. SSL pinning in

applications ensures that only certificates deemed valid or pre-defined will be trusted. Figure 30

shows the SSL Pinning Bypass testing log against the Mobile JKN application. In this test, no

security vulnerabilities were found during the SSL pinning bypass process that could threaten the

security of the Mobile JKN application. This indicates that the developers have implemented SSL

Pinning to ensure that only connections to servers with specific SSL certificates are accepted and to

prevent interception of traffic between the client and server using fake certificates.

Journal of Computer Science an Engineering (JCSE)
Vol. 5, No. 1, February 2024, pp. 46-63

e-ISSN 2721-0251

60
http://dx.doi.org/10.36596/jcse.v5i1.789

Figure 30. SSL Pinning Bypass Log on Mobile JKN

Root Detection Bypass

Root detection bypass is an attempt to avoid the detection of root access or superuser permissions on

Android devices, which can access and modify the system entirely. Figure 31 shows the superuser

application in the Mobile JKN application. The image above indicates that the application does not

detect requests for superuser permissions from other applications. This means the application does

not detect root access, even though the device has been rooted.

Figure 31. The Superuser application in Mobile JKN

Debugger Checker Bypass

Debugger checker bypass is a technique used to detect the presence of a debugger in an application

or software. A debugger is a tool used to inspect, monitor, and analyze the execution of code within

an application.

Journal of Computer Science an Engineering (JCSE)
Vol. 5, No. 1, February 2024, pp. 46-63

e-ISSN 2721-0251

61
http://dx.doi.org/10.36596/jcse.v5i1.789

Figure 32. Log Debugger Checker Bypass pada Mobile JKN

Figure 32 shows the debugger checker bypass log on the Mobile JKN application when analyzed

dynamically. The Mobile JKN application does not detect any connected debugger based on the

image above. If no debugger is detected connected to the application while running, developers will

have difficulty tracking, analyzing, and fixing any issues that may arise. Debugging becomes much

more difficult because developers will not have the ability to check variable values, see execution

flow, or find points where problems occur.

3.3. Static and Dynamic Analysis Results

The security assessment of the Mobile JKN application was conducted using both static and dynamic

analysis techniques. The static analysis results, presented in Table 2, reveal several vulnerabilities

and security issues within the application's code and permissions. Table 3, on the other hand,

showcases the dynamic analysis results, highlighting the application's performance and its ability to

resist certain security bypass techniques.

Table 2. Static analysis results

No Test Parameters Results

1. Dangerous Permissions The Mobile JKN application was found to have security vulnerabilities in the

permission access section. Five access permissions were categorized as dangerous

severity, including location access, camera access, reading data storage, audio

recording access, and data writing access. This is because requesting access

permissions without a clear purpose can violate user privacy.

2. Certificate Analysis The Mobile JKN application is vulnerable to Janus attacks. This is because the

application uses signature schemes v1 and v2 to secure the application.

3. Manifest Analysis The Mobile JKN application was detected to be able to exchange data with other

applications on the same user device.

4. Code Analysis In the code analysis, several findings were identified:

 App Log: The Mobile JKN application can log information. However, sensitive

information should not be logged.

 SQLite Database: Mobile JKN sends queries directly (raw SQL) to the database

without using protection mechanisms. This makes the application vulnerable to

SQL injection attacks.

 Hardcoded Secrets: in the Mobile JKN application, sensitive information is

directly inserted into the application’s source code.

 Weak Crypto: The Mobile JKN application uses weak cryptography to secure

data. The application was detected using the SHA-1 hash function, a weak random

number generator, and CBC encryption mode.

 SSL Pinning: The Mobile JKN application uses secure SSL certificates.

 Root Detection: The Mobile JKN application can detect rooted devices.

 WebView: The Mobile JKN application uses an insecure WebView. Additionally,

the application enables remote WebView debugging, which can pose a security

risk.

 In the Mobile JKN application, all detected domains have an ok status and are

categorized as good.

Journal of Computer Science an Engineering (JCSE)
Vol. 5, No. 1, February 2024, pp. 46-63

e-ISSN 2721-0251

62
http://dx.doi.org/10.36596/jcse.v5i1.789

No Test Parameters Results

5. Domain Malware Check In the Mobile JKN application, all detected domains have an “ok” status and fall into

the “good” category.

Table 3. Results of Dynamic Analysis

No Testing Parameters Results

1. API Monitoring When running the Mobile JKN application, no performance degradation is observed.

2. SLL Pinning Bypass The Mobile JKN application implements secure SSL Pinning.

3. Root Detection Bypass The Mobile JKN application is not yet able to fully detect rooted devices.

4.

Debugger Checker

Bypass

The Mobile JKN application does not detect any connected debuggers, making it

difficult for developers to track, analyze, and fix any issues that may arise in the

application.

Based on the static and dynamic analysis findings as presented in Tables 2 and 3, the Mobile JKN
application exhibits a mix of strengths and vulnerabilities. While the application demonstrates robust
SSL Pinning and root detection capabilities, it also reveals permissions, certificate usage, code
security, and WebView implementation vulnerabilities. These vulnerabilities pose a significant risk
to user privacy and application security, underscoring the urgent need for security enhancements.
Additionally, while the application shows satisfactory performance and effective SSL Pinning
implementation, improvements are necessary to enhance its ability to detect rooted devices and
debugger connections, bolstering overall security and developer capabilities.

4. Conclusion
The static analysis results indicate that the application does not contain malicious programs in the

malware domain check, can detect rooted devices, and uses secure SSL Pinning. However, several

potential security vulnerabilities were also found, such as the detection of dangerous access

permissions, the use of weak cryptography methods, the presence of services, activities, and the use

of vulnerable hardcoded secrets. In addition, the application was found to be vulnerable to Janus

attacks, SQL Injection, and padding oracle attacks. Meanwhile, the dynamic analysis results show

that the application has implemented SSL Pinning to secure communication pathways, and no

performance degradation was observed during the test activities. However, when root detection

bypass was performed during dynamic analysis, it was found that root detection was not implemented

in the application, and it did not detect any connected debugger while the application was running.

References

[1] R. Mustajab, " Durasi bermain aplikasi mobile di Indonesia meningkat pada 2022," retrieved from
https://dataindonesia.id/digital/detail/durasi-bermain-aplikasi-mobile-di-indonesia-meningkat-
pada-2022, 2023, accessed on June 21, 2023.

[2] Data.ai, “State of Mobile 2022 Indonesia,” retrieved from https://www.data.ai/en/go/state-of-mobile-
2022-indonesia, 2022, accessed on June 20, 2023.

[3] S. Solechan, "Badan Penyelenggara Jaminan Sosial (BPJS) Kesehatan Sebagai Pelayanan Publik,"
Administrative Law and Governance Journal, vol. 2, no. 4, pp. 686-696, Nov. 2019. doi:
10.14710/alj.v2i4.686-696

[4] V. Wirawan, “Penerapan E-Government dalam Menyongsong Era Revolusi Industri 4.0 Kontemporer di
Indonesia,” Jurnal Penegakan Hukum dan Keadilan, vol. 1, no. 1. Universitas Muhammadiyah
Yogyakarta, 2020. doi: 10.18196/jphk.1101.

[5] A. Wulanadary, S. Sudarman, and I. Ikhsan, “Inovasi Bpjs Kesehatan Dalam Pemberian Layanan Kepada
Masyarakat : Aplikasi Mobile Jkn,” Jurnal Public Policy, vol. 5, no. 2. Universitas Teuku Umar, p. 98,
Oct. 31, 2019. doi: 10.35308/jpp.v5i2.1119.

[6] R. Ratra and P. Gulia, “Privacy Preserving Data Mining: Techniques and Algorithms,” International
Journal of Engineering Trends and Technology, vol. 68, no. 11. Seventh Sense Research Group Journals,
pp. 56–62, Nov. 25, 2020. doi: 10.14445/22315381/ijett-v68i11p207

[7] R. Amalia, Wasilah, and Rini Nurlistiani, “Evaluasi dan Audit Aplikasi Mobile JKN pada BPJS
Kesehatan Menggunakan Model TAM dan COBIT 5.0”, JUPITER, vol. 14, no. 2-a, pp. 157–
166, Oct. 2022. doi: 10.5281./4734/5.jupiter.2022.10

[8] F. Ibrar, H. Saleem, S. Castle, and M. Z. Malik, “A Study of Static Analysis Tools to Detect
Vulnerabilities of Branchless Banking Applications in Developing Countries,” Proceedings of the Ninth

Journal of Computer Science an Engineering (JCSE)
Vol. 5, No. 1, February 2024, pp. 46-63

e-ISSN 2721-0251

63
http://dx.doi.org/10.36596/jcse.v5i1.789

International Conference on Information and Communication Technologies and Development. ACM,
Nov. 16, 2017. doi: 10.1145/3136560.3136595.

[9] M. Antonishyn, “Mobile applications vulnerabilities testing model,” Collection “Information Technology
and Security,” vol. 8, no. 1. Kyiv Politechnic Institute, pp. 49–57, Jul. 09, 2020. doi: 10.20535/2411-
1031.2020.8.1.218003.

[10] B. Yankson, J. V. K, P. C. K. Hung, F. Iqbal and L. Ali, “Security Assessment for Zenbo Robot Using
Drozer and mobSF Frameworks,” 2021 11th IFIP International Conference on New Technologies,
Mobility and Security (NTMS), Paris, France, 2021, pp. 1-7, doi: 10.1109/NTMS49979.2021.9432666.

[11] H. Shahriar, C. Zhang, M. A. Talukder, and S. Islam, “Mobile Application Security Using Static and
Dynamic Analysis,” Studies in Computational Intelligence. Springer International Publishing, pp. 443–
459, Dec. 15, 2020. doi: 10.1007/978-3-030-57024-8_20.

[12] T. H. Chiboora, L. Chacha, T. Byagutangaza, and A. Gueye, “Evaluating Mobile Banking Application
Security Posture Using the OWASP’s MASVS Framework,” Proceedings of the 6th ACM
SIGCAS/SIGCHI Conference on Computing and Sustainable Societies. ACM, Aug. 16, 2023. doi:
10.1145/3588001.3609367.

[13] B. Bokolo, G. Sur, Q. Liu, F. Yuan and F. Liang, “Hybrid Analysis Based Cross Inspection Framework
for Android Malware Detection,” 2022 IEEE/ACIS 20th International Conference on Software
Engineering Research, Management and Applications (SERA), Las Vegas, NV, USA, 2022, pp. 99-105,
doi: 10.1109/SERA54885.2022.9806746.

[14] M. S. Rahman, B. Kojusner, R. Kennedy, P. Pathak, L. Qi and B. Williams, “So {U} R CERER:
Developer-Driven Security Testing Framework for Android Apps,” 2021 36th IEEE/ACM International
Conference on Automated Software Engineering Workshops (ASEW), Melbourne, Australia, 2021, pp.
40-46, doi: 10.1109/ASEW52652.2021.00020.

[15] Shahriar, Hossain, Md Arabin Talukder, and Md Saiful Islam. “An exploratory analysis of mobile security
tools.” (2019). doi: 10.1080/19393555.2020.1741743.

[16] T. Mantoro, D. Stephen and W. Wandy, “Malware Detection with Obfuscation Techniques on Android
Using Dynamic Analysis,” 2022 IEEE 8th International Conference on Computing, Engineering and
Design (ICCED), Sukasbumi, Indonesia, 2022, pp. 1-6, doi: 10.1109/ICCED56140.2022.10010359.

[17] A. Bakhtiyor, A. Orif, B. Ilkhom and K. Zarif, “Differential Collisions in SHA-1,” 2020 International
Conference on Information Science and Communications Technologies (ICISCT), Tashkent, Uzbekistan,
2020, pp. 1-5, doi: 10.1109/ICISCT50599.2020.9351441.

[18] B. Kieu-Do-Nguyen, T. -T. Hoang, C. -K. Pham and C. Pham-Quoc, “A Power-efficient Implementation
of SHA-256 Hash Function for Embedded Applications,” 2021 International Conference on Advanced
Technologies for Communications (ATC), Ho Chi Minh City, Vietnam, 2021, pp. 39-44, doi:
10.1109/ATC52653.2021.9598264.

