
Available online at http://icsejournal.com/index.php/JCSE
Journal of Computer Science an Engineering (JCSE)

e-ISSN 2721-0251
 Vol. 5, No. 2, August 2024, pp. 116-136

116
https://doi.org/10.36596/jcse.v5i2.870

Class-Oriented Text Vectorization for Text Classification: Case

Study of Job Offer Classification

Ghislain Wabo Tatchum1*, Armel Jacques Nzekon Nzeko'o2, Fritz Sosso Makembe3, Xaviera Youh

Djam4

1,2,3,4University of Yaounde I, Faculty of Sciences, Computer Science Department, Yaounde, 812 Cameroon.
2Sorbonne University, IRD, UMI 209 UMMISCO Bondy, F-93143 France.
1ghislain.wabo@facsciences-uy1.cm*; 2 armel.nzekon@facsciences-uy1.cm; 3 fritz-oswald.makembe@facsciences-
uy1.cm; 4xaviera.kimbi@facsciences-uy1.cm
* corresponding author

A R T I C L E I N F O

ABSTRACT
Article History:
Received July 24, 2024
Revised August 28, 2024
Accepted August 30, 2024

Advances in data science have made it possible to solve many real-life problems

using automatic text classification applications. This is the case in e-recruitment,

where job offers are classified and recommended to jobseekers. In natural language

processing, text classification involves a vectorization step, whereby each

document is represented as a vector of coordinates linked to a keyword. Those

keywords are obtained by vectorizing the entire corpus, and are used to distinguish

one document from another in the corpus. However, it is preferable for each

keyword to distinguish one class from another. To obtain these types of keywords,

the authors consider the class of documents in the vectorization process. They first

create a class-oriented document for each class by merging all documents from the

same class, and then apply a vectorization algorithm. Experiments are carried out

using datasets from Minajobs, Nigham, and Monster with the classification models

Decision Tree, Naive Bayes, Support Vector Machine, and a deep neural network

self-attention transformer (TFM). The vectorization methods used on class-oriented

documents are Doc2Vec and TF-IDF combined with our class-oriented

vectorization strategies, including OC, ZIPF, and OWDC. To evaluate these

experiments, we used the precision, MAP, and F1-Score metrics. According to the

results, the TFM methods can improve accuracy by 29, 40, and 33% compared to

previous work and the traditional way of classifying text documents. The NB

methods can improve accuracy by 19, 22, and 20%, while the DT methods can

improve accuracy by 34, 37, and 34%. The SVM methods can improve accuracy by

33, 34, and 34% in the Monster, Nigham, and Minajobs datasets. In addition, we

validate our contribution by comparing ourselves with three other works in the

literature using four datasets (RE'16, Wap, WebKB, and Kla) and obtain

improvements in accuracy and F1-score up to 55%.

Keywords:
Supervised machine learning
Natural Language Processing (NLP)
Text classification
Class-oriented text vectorization
Pre-processing

Correspondence:
E-mail: ghislain.wabo@facsciences-

uy1.cm

1. Introduction

The task of text classification consists of cataloguing text into a set of categories corresponding to

predefined labels. It is an indispensable task in Natural Language Processing, which has a wide

spectrum of applications in fields like sentiment analysis which is a field of application of automatic

language processing that tries to detect translated emotions in text, generally whether they are

positive or negative, has been explored by Liang et al. [1], by Cheng et al. [2] and also in the work

of Storey and O’Leary [3]. Another application is question answering, a task consisting in

automatically answering questions posed by humans - a topic addressed in the work of Calijorne et

al. [4]. Or topic labelling, an NLP task as applied by Hao et al. [5] to Chinese text.

We can also mention job classification, a NLP task, as job offers are text-based and therefore require

language processing to classify them. This is addressed in works such as those by Parmar et al. [6]

or Akter et al. [7]. In the age of the explosion of digital technologies, and with an abundance of

information, the classification task is proving to be a time-consuming challenge. When it is done by

mailto:fritz-oswald.makembe@facsciences-uy1.cm
mailto:fritz-oswald.makembe@facsciences-uy1.cm

Journal of Computer Science an Engineering (JCSE)
Vol. 5, No. 2, August 2024, pp. 116-136

e-ISSN 2721-0251

117
https://doi.org/10.36596/jcse.v5i2.870

humans, tiredness and lack of knowledge in the field influence the results negatively. For thoses

reasons machine learning models are better to automate the task of text classification to optimise

execution time and efficiency on large volumes of data.

Classification of textual data requires some sort of mathematics pre-treatment to transform it into

supervised machine learning understandable form. The performance of classification models

depends on their understanding of textual data. It is imperative to have good vectorization if we

expect good data representation and therefore good classification. There are several works such as

Jin et al. [8] and Tiun et al. [9], who initiated the idea of class-oriented vectorization but with features

and meta-data or works such as [10,11] that have dealt with text classification but on employment

data or works of Afandi et al. [12] who have tackled the field of text classification based on social

data (texts obtained from social networks such as tweeter and instagram). They all address text

classification according to a standard scheme illustrated in Figure 1. In all these works, the

vectorization process involved providing a vector representation of the job offers. These vectors are,

in a base vector space, the keywords extracted from the entire corpus as features, and thus

discriminate the offers from one another. However, in the context of text classification, it would be

desirable for vector representations of job offers to be able to discriminate not one from another, but

rather each class (in this case, user profiles) from the others. In other words, the keywords should be

more representative of the classes than of the offers, to better distinguish one class from another and

also take into account all classes, even the under-represented ones; referring here to class-oriented

text vectorization.

Moreover, Information and Communication Technologies (ICTs) have transformed the traditional

job supply and demand market into a new online form through e-recruitment platforms. Hjort et al.

[14], demonstrate the benefits in some African countries of e-recruitment platforms. In the same vein,

Suvankulov et al. [15], demonstrate the benefits both for users of these platforms, who see their

probability of obtaining other jobs increase, and for recruiters, who save an enormous amount of time

in the recruitment process. E-recruitment platforms solve a number of problems for recruiters, by

reducing the time it takes to analyse applications and the costs associated with advertising, while at

the same time increasing the amount of information processed. This has been made possible by the

job recommendation systems for the right profile in the platform.

Therefore, in this work, the authors decide to apply class-oriented text vectorization to text

classification methods in the context of job offer classification. Indeed, the classification of job offers

is a domain to which the authors have applied class-oriented text vectoring, but not being the only

domain, the authors propose to vary the types of classification algorithms according to the models

on which they are based, to show the generalizability of the contribution.

In this work, recommendation systems is define as a subsets of information screening, consisting of

predicting the suitability of an element for a user, with the aim of proposing a set of elements that

are likely to be of interest to him. In this case, the aim is to provide a list of job offers for a given

user profile. In order for the machine learning models to well understanding jobs offers, the jobs

must be well vectorized. Note that as a prelude to a recommendation system, the job offer

recommendation problem in this article is approach as a classification problem. Here, the authors

consider our job offer classes as profiles, and the top-n recommendation of job offers here consists

in classifying them, but this time in descending order of class membership probabilities.

To this end, this work proposes to extend the conference work previously presented [16], which

initiated the beginnings of class-oriented document set vectorization and thus a more optimal vector

representation of documents. In this work, classification is performed using two machine learning

algorithms (decision tree and naive bayes) applied to two datasets named Minajobs and Nigham. In

this extension of the work, we first introduce new parameters whose variation highlights the impact

of class-oriented document size, the number of keywords in class-oriented document collections and

the different combinations of approaches on document classification performance. In order to show

Journal of Computer Science an Engineering (JCSE)
Vol. 5, No. 2, August 2024, pp. 116-136

e-ISSN 2721-0251

118
https://doi.org/10.36596/jcse.v5i2.870

that the idea is generalizable and reproducible, two other classification algorithms are added to the

previous two, namely the Support Vector Machine (SVM) algorithm and the neural networks with

attention mechanisms or transformers (hereinafter referred to as TFM). Following on from the

previous work [16], a complete and detailed presentation of the idea is proposed and a dataset named

Monster is added to the experimental data. Finally, in order to test the robustness of the proposal in

this paper and to validate it, we decices to compare ourselves with three previous works using four

datasets (RE'16, Wap, WebKB and Kla).

For the rest of this paper, the authors continue by presenting firstly a state of the art on text

classification, vectorization techniques and text classification methods, secondly the standard text

classification process, thirdly they are presenting the vectorization of class-oriented documents,

fourthly the experiments and their results and finally fifthly a conclusion is made.

2. Methods

In this section, the authors present the state of the art of the various existing methods, followed by a

presentation of the classic text classification process, and finally a presentation of vectorization on

class-oriented documents.

2.1. Background of Text Classification, Vectorization Techniques and Classification

Algorithms

We will start this sub-section by presenting some existing work on text classification, followed by

some existing techniques for text vectorization. And finally, some learning algorithms applied on

text classification problems in the previous works.

2.1.1. Background on Text Classification

Many works have focused on the text classification task with the aim of proposing solutions to

improve the efficiency of this task. For example, previous work by Tiun et al. [10], focuses on text

classification by comparing several combinations of text vectorization techniques and classification

algorithms on a requirements dataset. Their experiments show that techniques such as TF-IDF,

FastText and Word2Vec perform well in combination with Logistic Regression (LR) Convolutional

Neural Networks (CNN) and SVM algorithms.

Other works, notably those by Cunha et al. [10], are also interested in text classification. More

explicitly, they demonstrate that the efficiency of text classification systems depends as much on the

classification algorithms as, if not more so, on the preprocessing tasks prior to training. To this end,

they introduce a new step in the traditional text classification pipeline, which reduces the size of the

resulting vector representation while increasing density and reducing the number of training

instances. The result is an increase in performance and a reduction in text classification time.

In these earlier works, the vectorization step remains traditional, although Cunha et al. [10], add a

new step just after vectorization to reduce dimensionality, it nevertheless remains a classical

vectorization over the whole corpus. To this end, Jin et al. [8], initiate the idea of class-oriented

vectorization by proposing to add to the traditional vectorization process the consideration of feature

class frequencies, which optimises representation and increases classification performance.

However, the fact that this modification is made in the vectorization technique and applied to the

entire corpus still poses limits in terms of the representativeness of all classes and well-discriminating

representations.

2.1.2. Vectorization Techniques for Classification

In case of classification problems where datasets are in textual form, one of the first challenges is

vectorization. Indeed, machine learning algorithms for text classification do not take text as input,

but rather a vector representation of that text. Vectorization, in the case of textual data, is the

placement of this text in a representation space (vector space) which will enable the comprehension

and assimilation of this data by machine learning models. Textual data is usually a collection of

Journal of Computer Science an Engineering (JCSE)
Vol. 5, No. 2, August 2024, pp. 116-136

e-ISSN 2721-0251

119
https://doi.org/10.36596/jcse.v5i2.870

documents containing hundreds, thousands or even millions of words, so the aim is to provide a

representation in a smaller space indexed by keywords, so as to preserve as much of the original

information as possible. Good vectorization is therefore essential for good understanding of the text

by machine algorithms, and therefore for good classification. Several vectorization methods have

been proposed in the literature, the authors present just a few of them below.

a) Word Count

In this method, the documents are represented by the occurrences in the document of the words in

the corpus. Indeed, considering a corpus consisting of 04 job offers (documents) {J1, J2, J3, J4}, with

a dictionary of 05 words {A, B, I, K, L} such that:

J1 : B K A B A K I I;

J2 : A L I B A L I B A B;

J3 : B I B I B A L A;

J4 : K L L K L I L K K K I L I I;

The representation of this corpus using this method shown in table 1 :
Table 1. An example of word count

Documents A B I K L

J1 2 2 3 1 2

J2 3 3 2 0 2

J3 2 3 2 0 1

J4 0 0 4 5 5

This method is very simple to design, but quickly becomes inappropriate as the corpus grows and

the dictionary increases, because we end up with very large vectors of a size equal to the cardinal of

the dictionary, and also a lot of hollow vectors.

b) TF-IDF

In an attempt to overcome the limitations of the previous technique (Word count), the TF-IDF

technique attempts to select important words according to a coefficient that is both proportional to

the occurrence of the word in a document and inversely proportional to the occurrence of the word

in the entire corpus. The term TF-IDF therefore stands for term frequency and inverse document

frequency. The formula proposed by Sabri et al. [17], is as following :

𝑡𝑓𝑖𝑑𝑓(𝑡, 𝑑, 𝐷) = 𝑡𝑓(𝑡, 𝑑) × 𝑖𝑑𝑓(𝑡, 𝐷) (1)

t : terms, d : document, D : documents collection.

Here tf(t,d) is the function that provides the frequency of t in d, as defined following :

 𝑡𝑓(𝑡, 𝑑) =
𝑐𝑜𝑢𝑛𝑡(𝑡)

|𝑑|
 (2)

count(t) : occurrences of t , |𝑑| : number of all words in d.

The idf is defined as following:

𝑖𝑑𝑓(𝑡, 𝐷) = 𝑙𝑜𝑔 (
|𝑑|

1+|{𝑑∈𝐷:𝑡∈𝑑}|
) (3)

|𝑑| : size of the document space, |{𝑑 ∈ 𝐷: 𝑡 ∈ 𝑑}|: occurrences of in d.

c) Word2Vec

This is a vector-based word representation method based on neural networks. It is made up of three

layers (hidden, input and output): Common Bag Of Words (CBOW) and Skip-gram. The idea is to

rely on the context of adjacent words in a corpus and identify similar words based on their

Journal of Computer Science an Engineering (JCSE)
Vol. 5, No. 2, August 2024, pp. 116-136

e-ISSN 2721-0251

120
https://doi.org/10.36596/jcse.v5i2.870

representation. Kowsari et al. [18], present this method in more detail, specifying inputs and outputs

for each layer, and also the task and roles of each layers.

This method represents words by vectors in such a way as to highlight the relationship between

words, i.e. vectors of similar words will have close values. Here, the authors want to represent

documents as collections of words. Such a method will lead us to have a document representation in

the form of a matrix set of words instead of a single vector.

d) Doc2Vec

Unlike the Word2Vec method, which represents a document as a matrix of vectors representing its

words, Doc2Vec will provide a single vector representation for a document. This is a neural approach

to unsupervised learning, providing a vector representation for sequences of words of variable length,

or phrases. They are two main Doc2Vec versions: Distributed Bag of Words (DBOW) and

Distributed Memory (DM) [10].

The first variant, known as DM for Distributed Memory, is based on the principle of learning to

construct a vector of invariable size as a representation from a portion of text and its context.

Consisting of a projection layer (whose role is to create word/document vectors during learning) and

an output layer (whose role is to predict the target word from the distributed context representation),

it is then passed a document and its context as input.

The second variant, DBOW or Distributed Bag of Words, relies more on the structure and distribution

of words in the document than on their meaning. The DBOW version is interesting for extracting the

distribution properties of words in the corpus, and is easier and faster than the DM version, which is

more efficacious for extracting the meaning and significance of words.

Doc2Vec is therefore a technique that allows a single representation vector to be obtained for a

document. It is therefore less space-hungry than the Word2Vec technique. Doc2Vec reduces

memory requirements up to 80% compared with Word2Vec, while remaining just as efficient [16].

These vectorization techniques are basic, but other works [20, 21, 22] have tried to ameliorate

classification algorithms performances by using deep learning models both as classifiers and as

vectorizers (feature extractors), In some cases, they have been able to upgrade the results of the

classification algorithms, but generally, the characteristics obtained by deep learning are not

explicable, and above all, they do not use the basic methods and also the upstream knowledge of the

document classes, since this is supervised learning.

 2.1.3. Models of Machine Learning

They are several text classification algorithms based on machine learning proposed in literature, each

operating on different principles but based on knowledge learned from the data. Some of the models

used in this work are shown below.

a) Naive Bayes

The problem of classification can be likened to a selection of hypotheses (h) given a set of data (d).

The Naive Bayes model uses Bayes' theorem to calculate the probability that a hypothesis is the best

given a set of data. Bayes' theorem is stated as follows:

𝑃(𝐻 ∨ 𝑑) =
𝑃(𝑑∨𝐻)∗𝑃(𝐻)

𝑃(𝑑)
 (4)

𝑃(𝐻 ∨ 𝑑) : Probability of H with knowledge of data d; 𝑃(𝑑 ∨ 𝐻): probability of the data knowing

H; 𝑃(𝐻) : Hypotheses H probability; 𝑃(𝑑): data d probability.

 Training a naive Bayes model is simply a matter of calculating the probabilities of each class for

different documents, so there's no need for parameter adjustments or optimizations.

Advantages: naive bayes is relatively simple to understand and construct, explicable, fast and easy

to train, even with a small dataset.

Journal of Computer Science an Engineering (JCSE)
Vol. 5, No. 2, August 2024, pp. 116-136

e-ISSN 2721-0251

121
https://doi.org/10.36596/jcse.v5i2.870

Disadvantages: because of the assumption of word independence in this model, it's often referred to

as naive or simple. In general, this type of algorithm can do the same classification work as the other

algorithms that already exist, but its performance is limited when it comes to large amounts of data

to process, because as data grows, so do the dependencies between the set of words, and therefore,

the verification of the Naïve Bayes hypothesis decreases.

It remains one of the easiest classification algorithms to implement, since it is based solely on a

probability law, and its use is also justified by the fact that this paper is an extension of previous

work [16] which used this algorithm. The extension must therefore be at least as effective as the

algorithms previously used.

b) Decisions Tree

It's a tree structure similar to an organisational chart, in which an internal node represents a feature,

the branch represents a decision rule, and each leaf node represents the result. The highest node is

the root node. The aim of this model is to create a decision tree that performs a criterion-by-criterion

analysis. Significant criteria are determined according to statistical weights of the values as present

in some previous work [31].

A decision tree classifies a document, starting at the root of the tree and moving successively

downwards through the branches whose conditions are satisfied by the document, until a leaf node

is reached. The class that labels the leaf node is assigned to the document.

There are several decision tree algorithms [23], of which the most popular are: (i) ID3 (Iterative

Dichotomiser 3) : which, as its name suggests, performs a dichotomous traversal of the tree, each

time exploiting entropy and gain information to select the correct branch; (ii) C4.5 : which uses gain

information or gain ratios to evaluate splitting points within decision trees. This is a later version;

(iii) CART: The term, CART, hense for “Classification And Regression Trees” this algorithm use a

measure names Gini impurity to identify the ideal attribute for splitting.

The decision tree model is one of the most explicable machine learning models, and is often used in

work on the explicability of black-box models. Other models, such as random drills and set models,

are also based on its working principle, which justifies its use in this work.

c) Support Vector Machine (SVM)

In machine learning, the svm algorithm is one of the most widely used models; it was initially built

for binary classification problems [9] but was soon adapted for multi-class classification problems

[18]. In principle, this algorithm attempts to construct a hyperplane that will separate the data to be

classified as best as possible, so as to maximize the distance between the data closest to the

hyperplane on either side. The dimension of the hyperplane is a function of the number of classes.

The theoretical formalization of this model is given below [8, 10]:

𝑓(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑡
(∑ 𝑓𝑡, 𝑓(𝑥)𝑓) (5)

Intuitively, the solution to a k-class classification problem is to construct a decision function for all

k classes at once, which amounts to an optimization problem defined as follows:

𝑚𝑖𝑛
𝑤1,𝑤2,...,𝑤𝑘,𝜁

1

2
∑ 𝑤𝑘

𝑇𝑤𝑘 + 𝑐∑ 𝜁𝑡(𝑥𝑡,𝑦𝑡)∈𝐷𝑘 (6)

st.

𝑤𝑦𝑡
𝑇 𝑥 − 𝑤𝑘

𝑇 ≤ 𝑖 − 𝜁𝑡,

∀(𝑥𝑡, 𝑦𝑡) ∈ 𝐷, 𝑘 ∈ {1,2. . . 𝐾}, 𝑘 ≠ 𝑦𝑡 .

where (𝑥𝑖, 𝑦𝑖) represent the training data points such that (𝑥𝑖, 𝑦𝑖) ∈ 𝐷, C is the penalty parameter, 𝜁

is a slack parameter, and k stands for the class.

Journal of Computer Science an Engineering (JCSE)
Vol. 5, No. 2, August 2024, pp. 116-136

e-ISSN 2721-0251

122
https://doi.org/10.36596/jcse.v5i2.870

d) Neural Network : Transformers

In NLP, deep neural network models such as CNNs and RNNs have often been used for text

classification, but recently they have begun to be replaced by neural networks with attention

mechanisms (self attention)[13]. Attention mechanisms enable transformers to easily pass

information through input sequences. In their general architecture, transformers consist of decoders

and encoders with fully connected layers [24]. The encoder is the input and constructs an optimized

representation of the input it receives, while the decoder uses this representation and other attributes

to provide an output.

Our standard model will consist of input, dropout and output layers. To these layers we've added

dense layers with softmax and Relu activation functions respectively, as well as a 1D global average

pooling layer of course, as this is the text. The training parameters used were the adam activation

function and the sparse_categorical_crossentropy loss function for a batch size of 32 and a number

of epochs of 40.

 e) Summary of state of art.

After presenting a review of all the existing methods and techniques in the field of text classification,

a summary of the work that has focused on increasing the performance of classification algorithms

by trying to optimize the pre-processing and vectorization stage is presented in Table 2.

Table 2. summary of the literature on text vectorization for classification

Authors Problems Approaches limits

Tiun et al. [10]

Classification of functional

and non-functional

requirement in software

requirement

Word2vec and fast Text

techniques for vectorization

Vectorization is performed on the entire

corpus, which can discriminate between

certain classes and give a non-optimal

representation.

Cunha et al. [9]

Improve text vectorization

to boost the performance of

text classification

algorithms.

 Extended pre-processing

pipeline: On the role of meta-

feature representations,

sparsification and selective

sampling

The metadata extracted here do not

allow us to make a representation of

documents that discriminates them by

class, but rather from one another.

Jin et al. [8]

Optimize text vectorization

to improve the performance

of text classification

algorithms.

Feature selection based on

absolute deviation factor for

text classification.

The features extracted enable us to

discriminate documents not by class, but

rather from one another.

Afandi et al. [12]
Detect emotions in social

network comments

(sentiments analysis)

Text classification with

classical text vectorization

using the TF-IDF technique

Vectorization is performed on the entire

corpus, which may discriminate certain

classes and result in a non-optimal

representation.

2.2. Classic Flowchart of Text Classification

Figure 1 summarizes the main stages of a text classification system with machine learning

algorithms. In this process, the authors start generally by set of cleaning and preprocessing tasks on

the data, in this case job offers. These tasks may involve transforming the offers into a list of words

known as tokens (this is tokenization), then into a list of radical words known as sterms (in this case,

sterming), and finally removing unwanted elements from these lists. These are words, sterms or

characters that are superfluous or don't provide any significant information.

After this step, they transform the lists of words (sterms) into numerical vectors (vectorization),

traditionally by selecting keywords (features) from the entire corpus and representing the offers in

the space formed by these keywords. Techniques such as TF-IDF[32] and Doc2Vec are used. This

is followed by the actual classification, using machine learning algorithms to produce lists of offers

by class (user profiles) and thus a top-n recommendation.

Journal of Computer Science an Engineering (JCSE)
Vol. 5, No. 2, August 2024, pp. 116-136

e-ISSN 2721-0251

123
https://doi.org/10.36596/jcse.v5i2.870

Figure 1. Standard flowchart of the text classification process with machine learning algorithms.

2.2.1. Preprocessing of Job Offers

In data science, before using the data, an essential step is to pre-process it. Generally, data sets

obtained directly after collection contain a lot of anomalies and need to be pre-processed. This is an

important step because the data quality has a direct influence on the results of the processing carried

out on it. This has also been illustrated in the case of text classification that the text pre-processing

has an important influence on the classification algorithms performance [25, 12].

In this stage, the unwanted terms are removed, words and characters (i.e. those not providing

information relevant to our task). Then, as in the previous work [26, 27], the offers are transformed

into a list of words without separators by tokenization, and then extracted the roots of compound

words to leave only a list of sterms.

 2.2.2. Vectorization

In this step, the text are plunged from their initial representation into a vector representation in a new,

reduced space. In other words, learning from the entire corpus, extract keywords (features) and use

them as the basis for the new representation space, with coordinate values calculated variably

according to the vectorization techniques used. Inspired by previous work [28], the following

techniques are use : TF-IDF and Doc2Vec. This choice was motivated by the fact that, in the literature

[12, 13, 28], these techniques have been shown to be among the best vectorization techniques, and

also because the TF-IDF technique, being frequency-based, is an explicable one (i.e. a happy medium

between efficiency and explicability), but also because the new vectorization paradigm also works

well on deep learning-based techniques: Doc2Vec.

 2.2.3. Supervised Machine Learning Models for Classification and Top-N

Recommendation

To match job offers and user profiles, the job offer recommendation task are assimilate to a

classification of offers in classes representing user profiles. So, machine learning algorithms that

were trained on a proportion of the data and then tested on the other proportionhave been used. After

testing, we had offers arranged in classes with probabilities of belonging to these classes, so from

these probabilities a ranking is made to provide the top-N recommendation.

2.3. Vectorization on Class-Oriented Document Collection

In this sub- section, we present in greater detail the operating mechanism of class-oriented document

vectorization, starting with architecture, followed by parameterizations, then by the definition of each

of class-oriented vectorization strategies, and finally by classification and recommendation.

2.3.1. General Architecture

In the classic text vectorization the entire corpus are passing under its textual representation, directly

to the vectorization techniques, which will select from the entire corpus the keywords that will be

the features of the numerical representation. Except that in some cases the corpus is unbalanced

Journal of Computer Science an Engineering (JCSE)
Vol. 5, No. 2, August 2024, pp. 116-136

e-ISSN 2721-0251

124
https://doi.org/10.36596/jcse.v5i2.870

(certain classes are under-represented), resulting in a non-representative selection of keywords and

therefore poor vectorization. What's more, even when the corpus is balanced, the keywords used here

are generally the most recurrent ones, or those that only serve to distinguish one offer from another,

and therefore does not characterize the classes themselves.

That's why a class-oriented approach to text vectorization is proposing, which adds a new step to the

classic vectorization process by creating class-oriented documents (a set of keywords or features)

that will be passed on to the vectorization techniques. More explicitly, instead of passing documents

directly to the vectorization technique, they start by creating a class-oriented document of the same

size for each class (profile), containing the set of words that characterize it and therefore distinguish

it from other classes. These documents are then used for vectorization. This ensures that each class

can be represented in the same way as the others, and above all that the digital representations of the

initial documents are in a vector space that is representative and discriminating by class, since this is

the task of classification.

Figure 2 shows the new text classification process (job offers in our case) with class-oriented text

vectorization. It clearly shows new step added to the classic scheme presented earlier in figure 1.

Figure 2. Flowchart of the text classification process using machine learning algorithms with the

vectorization step applied to class-oriented documents collection.

 2.3.2. Experimental settings

In this work, three class-oriented vectorization strategies were used. Each of these strategies uses a

set of parameters, which we'll start by defining here : (i) Parameter K: this is an integer taking its

value from the set {100, 300, 500, 1000, 1300, 1500, 2000, 2300, 2500, 3000}. It's the size of the

class-oriented documents or in other words, it's the number of keywords chosen per class to form the

class-sorted document. (ii) Parameter P: This too is an integer, whose values are in the set {10, 30,

50, 100, 300, 500, 1000, 1500, 2000, 3000}. Except that this time it's the size of a vectorized offer.

In other words, it's the length of the vector representation of the offers. (iii) Parameter e: referring

to the keyword rebalancing strategy in the event of a word deficit in a class for a high K value. e is

included in the set {1, 2, 3}, with the meanings randomly duplicating words in the event of deficits

to fill in, randomly reducing other class-oriented documents to be at the same level, leaving the

respective imbalance for values 1, 2 and 3.

 2.3.3. Class Oriented Document

Occurrence Count (OC) : to form the class-oriented document with the K most frequent words in

each class. We assume that the more frequent a word is in a class, the more it discriminates from the

others. We no longer vectorize all the documents in each class, but rather, for each class, the

document made up of K words, the most frequent in all the documents in each class. However, this

strategy can quickly prove limited when several words are frequent in several classes at the same

Journal of Computer Science an Engineering (JCSE)
Vol. 5, No. 2, August 2024, pp. 116-136

e-ISSN 2721-0251

125
https://doi.org/10.36596/jcse.v5i2.870

time. These words are no longer discriminating in these cases, and therefore not interesting as

keywords.

Zipf law (Zipf): In order to resolve the limitation posed by the OC strategy, the latter proposes to

form class-oriented documents by the K words with the highest ZIPF score (defined in [29]) in each

class. This score inversely weights the frequency of words by their rank when they are ranked in

descending order of frequency. Although this technique rebalances the distribution of keywords, it

doesn't completely solve the previous problem. Indeed, many words still manage to have a good

ZIPF score despite being in several other classes, particularly when the class is not very large.

Occurrences Weighted by the Dispersion in the Class (OWDC): In this strategy, word frequencies

is penalize by the number of classes in which they are found. A new score C(m) is define given by

the equation 7, m being a word. For each class, the class-oriented documents will be made up of the

words with the highest score C(m), i.e. the most frequent words in the class and the least frequent in

other classes.

𝐶(𝑚) =
𝑊𝑜𝑟𝑑𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝐼𝑛𝐶𝑙𝑎𝑠𝑠∗𝑁𝑢𝑚𝑏𝑒𝑟𝑠𝑂𝑓𝐽𝑜𝑏𝑠𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔𝑊𝑜𝑟𝑑𝑠

𝑁𝑢𝑚𝑏𝑒𝑟𝑠𝑂𝑓𝐽𝑜𝑏𝑠𝐼𝑛𝐶𝑙𝑎𝑠𝑠
 (7)

Let's assume, as shown in figure 3, a corpus made up of four classes C1, C2, C3 and C4, in a

vocabulary of words made up of {A, B, C, D, E, F, I, K, L, X, Y}. The classes each possess

documents, but have specific words that discriminate them from one another. For C1 we have the

words A and B, for C2 we have C and D, F and E for C3 and X and Y for C4. The standard process

can provide us with feature sets of words (I, K, L, E, X, F, Y, C) that represent the corpus, but not

the individual classes. We can also see that the fact that classes C1 and C2 don't have enough

documents discriminates them. Moreover, words like I, K and L are present in all classes and

therefore have no discriminating information.

Figure 3. Scheme showing how text vectorization works on a class-oriented document collection, applied

to a corpus of four classes whose documents are sets of words (letters). The class-oriented document

collection is shown in green.

The selection of keywords for vectorization are significantly upgraded by the use of strategies. We

can see for example, the OC strategy prioritizes the most occurrently words in classes, allowing each

class to be represented in the keywords, even though uninteresting words such as I and L remain.

The ZIPF strategy inversely prioritizes the words of each class by their rank, improving keyword

Journal of Computer Science an Engineering (JCSE)
Vol. 5, No. 2, August 2024, pp. 116-136

e-ISSN 2721-0251

126
https://doi.org/10.36596/jcse.v5i2.870

choice despite the fact that I and K remain in the selection. Finally, OWDC selects only those words

that exactly characterize each class.

 2.3.4. Classification and Top-n recommendation in our case.

Once the new vectorization paradigm has been applied and obtained the vector representations, we

pass them on to machine learning algorithms including: Naive bayes, decision tree, svm, neural

network: transformers. These algorithms will learn from the vector representations of the offers, and

classify the offers into classes based on the trained models, with a view to a future top-n

recommendation. In this way, we'll be able to see the impact of this new paradigm on the performance

of our algorithms.

In order to show that the proposed new vectorization paradigm is generalizable, the authors proposed

to apply it to machine learning algorithms based on different models. The Naive Bayes algorithm,

which is a probabilistic model, the decision tree algorithm, which is the basic model of randomized

drills and boosting algorithms, the SVM algorithm, which is a regression model, and neural networks,

which are deep learning models. It also showed that the contribution can be applied to both

explainable and black-box models.

The top-n recommendation problem here is assimilated to a classification task, where the profiles are

the classes. We therefore classify job offers in the standard way, arranging them by class and thus by

profile. In addition, in each class (for each profile), the jobs that have been classified are ranked in

descending order of the probability provided by the classification algorithm, and we thus obtain our

top-N recommendation.

3. Results and Discussion

This section first presents the datasets used, then the evaluation protocol and results.

3.1. Datasets Used

For our experiments, three datasets are proposed, namely “Monster”, “Nigham” and “Minajobs”,

these names were given according to their sources. The Monster dataset is a set of 679 job offers in

the IT field scoped on the Monster1 job publication site, and divided into three classes C1 for software

architect, C2 for graphic designer and C3 for software engineering. The Nigham dataset is a large

dataset used in previous work [11] and available on kaggle2, from which we extracted 43,083 IT job

offers divided into 07 classes including C1 for Developer, C2 for Digital Marketing, C3 for Designer,

C4 for IT security, C5 for Computer maintenance, C6 for Community manager and C7 for Network

Administrator.

The Minajobs dataset is a set of 1,005 job offers scrapped on minajobs3 a job publication site in

cameroon, they are divided into 11 classes namely : C1 for Developer, C2 for Web master, C3 for

Database manager, C4 for Analyst, C5 for Digital Marketing, C6 for Designer, C7 for IT security,

C8 for Computer maintenance, C9 for Community manager, C10 for Archivist and finally C11 for

System Administrator. For these three datasets, the choice to use only IT job offers was justified by

the fact that the labelling was done by ourselves, and manually.

1https://www.monster.fr/ visited in April 2022

2https://www.kaggle.com/jsrshivam/job-recommendation-case-study visited in April 2022

3http://minajobs.net visited in June 2022

https://www.monster.fr/
https://www.kaggle.com/jsrshivam/job-recommendation-case-study
http://minajobs.net/

Journal of Computer Science an Engineering (JCSE)
Vol. 5, No. 2, August 2024, pp. 116-136

e-ISSN 2721-0251

127
https://doi.org/10.36596/jcse.v5i2.870

Figure 4. Diagram Showing the Distribution of Job Offers by Class in the Monster, Nigham and Minajob Corpora

Respectively.

Figure 4 presents three bar charts showing the distribution of job offers by class for the three corpora

Monster, Nigham and Minajobs. Each diagram is on a different scale, given the difference in

proportion between the number of offers in each corpus. We can see from these diagrams that the

corpora are unbalanced, with some classes over-represented (C1 for Monster, C1, C3 and C6 for

Nigham and C1 for Minajobs) and others under-represented (C2 and C3 for Monster, C4 for Nigham

and C10 for Minajobs). It should be noted that the authors only focused on IT offers because, as the

labelling was done manually, they did not have any experience in other fields to help us do this.

3.2. Evaluation Protocol

To evaluate the work, each dataset is splited into two: 70% for training and 30% for testing. The

classification test was evaluated using Precision and F1-score. But they didn't stop there. Based on

the probabilities obtained by the classification models, they produced a recommendation using top-

n values (5, 10, 50), which was evaluated using the MAP (Mean Average Precision) metric [30].

Thus, the precision metric is defined as a ratio between the number of well-classified or well-

recommended offers and the total number of classifications or recommendations [31]; its formal

definition is given by formula (8) with TP for true positives, FP for false positives and FN for false

negatives. The F1-score metric is an average between the precision and recall metrics; formula (9)

gives its formal definition [23].

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑ 𝑇𝑃𝑖
𝐿
𝑖=1

∑ 𝑇𝑃𝑖
𝐿
𝑖=1 +𝐹𝑃𝑖

 (8)

and

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
=

∑ 2𝑇𝑃𝑖
𝐿
𝑖=1

∑ 𝑇𝑃𝑖
𝐿
𝑖=1 +𝐹𝑃𝑖+𝐹𝑁𝑖

 (9)

And the MAP metric is a sort of average of the precision averages, which enables us to evaluate the

proposed recommendation approximation by taking into account not only the correct classifications

(recommendation), but also their position in the top-N. It is defined as follows [23]:

𝑀𝐴𝑃@𝑁 =
1

𝑁
∑ 𝐴𝑃𝑖
𝑁
𝑖=1 (10)

where :

 𝐴𝑃@𝑁 =
1

𝐺𝑇𝑃
∑ 𝑃@𝑘 ∗ 𝑟𝑒𝑙@𝑘.𝑁
𝑘=1 (11)

Where GTP is the total number of true positives, n is the number of documents of interest to the user,

P@k is the precision at rank k, and rel@k is the relevance function which will be 1 if the document

at rank k is relevant and 0 otherwise.

Journal of Computer Science an Engineering (JCSE)
Vol. 5, No. 2, August 2024, pp. 116-136

e-ISSN 2721-0251

128
https://doi.org/10.36596/jcse.v5i2.870

3.3. Results and Comments

Figures 5, 6, 7 each represent tables, respectively for the Monster, Minajob and Nigham datasets, the

best results of classification and ranking of job offers as a recommendation system; with the best

combinations of parameters and metrics previously presented. Each table contains 08 sections with

09 blocks. First line in each section is the performance of machine learning algorithms (DT, NB,

SVM and TFM) combined with classical vectorization (BASIC with Doc2Vec or TF-IDF). Each

block of the different sections compares the first-line classification system (BASIC) with different

proposed strategies (OC, ZIPF, OWDC) that make up our grant.

The use of the color green indicates that the classification system for this line has obtained the best

result according to its metric and has no ties. The use of the color blue means that the line's

classification system performs better than the base system, but has either ties or another system that

is better than it. The color red is used when the performance of the classification system is below that

of the base system. And white marks the basic performance.

Figure 5. Results of the Best Combinations of Parameters (Best Combination of P, T and e) of job offer

Classification as a top-N Ranking on the Monster Corpora.

3.3.1. Description of Best Results Table

The figure 8 presents a table that contains 72 blocks of results where we compared BASIC to our

contribution (OWDC, OC, ZIPF). This figure has a total of 216 cells, each one related to a block of

the tables in figures 5, 6, 7 and contains the job classifier system that has the best performance in the

associated block. We are not imp. the improvement compared to the classic classification system in

the first line of the block (BASIC).

In Figure 8, the color blue indicates that in this section it's the OC class-oriented vectorization

strategy that has obtained the best result, the color green it's used for the ZIPF strategy and yellow

Journal of Computer Science an Engineering (JCSE)
Vol. 5, No. 2, August 2024, pp. 116-136

e-ISSN 2721-0251

129
https://doi.org/10.36596/jcse.v5i2.870

for the OWDC strategy. We leave in white with a “>” sign the sections where it's the basic system

that has obtained the best results.

Figure 6. Results of the Best Combinations of Parameters (Best Combination of P, T and e) of Job Offer

Classification as a top-N Ranking on The Minajob Corpora.

3.3.2. Best Results Comments

General comparisons with classic job classification systems : A global observation of table

presented in Figure 8 immediately reveals that the BASIC classification system is better only 2 times

(on the Monster corpus, the NB-D2V and NB-TFIDF lines for the MAP metric alone are only in the

top 5). For a total of 216 blocks, this represents around 0.93% (2/216), leaving 99.07% (214/216) for

our contribution. In other words, our contribution is 99.07% better. Within this 99.07%, the ZIPF

strategy (green color) is represented at 13.88% (30/216), the OC strategy (blue color) at 25.46%

(55/216) and the OWDC strategy (yellow color) at 59.72% (129/216).

Improvement rate in Monster dataset : If we look at the Monster dataset alone, we can make the

following observations: the rate of improvement of the decision tree model (DT) lies within the

ranges [6%, 30%], [11%, 26%] and [10%, 34%]. The Naive Bayes (NB) model lies within the ranges

[0%, 17%], [0%, 11%] and [3%, 19%]. Similarly, the rate of improvement of the SVM model is in

the ranges [5%, 26%], [0%, 26%] and [3%, 33%]. Finally, that of the TFM model is in the ranges

[3%, 41%], [7%, 30%] and [4%, 82%], respectively for the Accuracy, MAP and F1-score metrics

for all models.

Journal of Computer Science an Engineering (JCSE)
Vol. 5, No. 2, August 2024, pp. 116-136

e-ISSN 2721-0251

130
https://doi.org/10.36596/jcse.v5i2.870

Figure 7. Results of the Best Combinations of Parameters (Best Combination of P, T and e) of Job Offer

Classification as a top-N ranking on the Nigham Corpora.

Improvement rate in Minajobs dataset : Looking at the Minajob dataset in the same way, we note

that: the rate of improvement of the decision tree model (DT) lies within the ranges [13%, 34%],

[18%, 32%] and [13%, 34%]. The Naive Bayes (NB) model lies within the ranges [4%, 20%], [6%,

11%] and [4%, 20%]. Similarly, the rate of improvement of the SVM model is in the ranges [6%,

42%], [9%, 32%] and [6%, 34%]. Finally, that of the TFM model is in the ranges [3%, 31%], [9%,

32%] and [6%, 34%], respectively for the Accuracy, MAP and F1-score metrics.

Improvement rate in Nigham dataset : Focusing on the Nigham corpus, the rate of improvement

from the point of view of the decision tree (DT) model lies within the ranges [13%, 37%] for the

Precision metric, [18%, 32%] for the MAP metric and [13%, 34%] for the F1-score metric. From the

point of view of the Naive Bayes (NB) model, it lies within the ranges [4%, 22%] for the Precision

metric, [6%, 11%] for the MAP metric and [4%, 20%] for the F1-score metric. From the point of

view of the SVM model, it lies within the ranges [4%, 34%] for the Precision metric, [9%, 32%] for

the MAP metric and [7%, 34%] for the F1-score metric. And from the point of view of the TFM

model, it lies within the ranges [3%, 37%] for the Precision metric, [7%, 30%] for the MAP metric

and [4%, 40%] for the F1-score metric.

Use of OWDC, OC and ZIPF with the machine learning algorithms : If we now look at the table

of best results (Figure 8) for TFM, DT, NB and SVM, we can do the following remarks.

OWDC(45/129) and OC(6/55) for TFM, ZIPF (16/30) and OC (15/55) are best for NB,

OWDC(29/129) and OC (9/55) are best for SVM, ZIPF (16/30) and OC (15/55) are best for NB and

OWDC (34/129) and ZIPF (8/30) are best for DT. A general remark is that OWDC is significantly

better for all models, and the combination with TFM gives better performance than any other

combination. We recommend the use of the combination TFM-OWDC.

Journal of Computer Science an Engineering (JCSE)
Vol. 5, No. 2, August 2024, pp. 116-136

e-ISSN 2721-0251

131
https://doi.org/10.36596/jcse.v5i2.870

Use of OWDC, OC and ZIPF with the vectorization technique : when we analyze table shown in

figure 8 from the point of view of the vectorization techniques (Doc2Vec and TF-IDF), we conclude

that the strategies are fairly stable when combined with either technique. In fact, for the OWDC

70/129 for TF-IDF and 59/129 for Doc2Vec, for OC strategy we have 28/55 for Doc2Vec and 27/55

for TF-IDF and for ZIPF 19/30 for Doc2Vec and 11/30 for TF-IDF

Figure 8. Summary of Tables in Figures 5, 6 and 7 Showing the Best Results for Each Block; with Yellow Showing

the Times when OWDC was Best, Blue Showing the Times when OC was best and green showing the times when

Zipf was Best.

3.3.3. Best Parameters Comments

The graphs in figures 9 and 10 show the evolution of the performances according to the parameters

K and P in top 10. In these figures, the left column corresponds to the TF-IDF technique and the right

column to Doc2Vec, while the lines represent the Precision, MAP and F1-score metrics for the first,

second and third respectively.

Performance by K top 10: Looking at figure 9, we can see several graphs showing the evolution of

different performances (according to metrics and classification systems) as a function of K parameter

values. As a result, we can see that Precision and MAP evolve in much the same way, with low

performance at low K values and stabilizing around 1500. The F1-score metric, on the other hand,

quickly becomes stable at higher K values. It can also be noted that, generally speaking, the DT and

TFM models are stable for different values of K according to different metrics.

Journal of Computer Science an Engineering (JCSE)
Vol. 5, No. 2, August 2024, pp. 116-136

e-ISSN 2721-0251

132
https://doi.org/10.36596/jcse.v5i2.870

Performance by P top 10 : Similarly, looking at figure 10, we note that the Accuracy and MAP

metrics become generally constant from P values to 500 and reach their peak values for P around

1000. The F1-score arrives at its higher values for a P of around 300, then falls back around 600 to

be more or less constant thereafter, precisely with NB, and is fairly stable with SVMs and the DT.

Figure 9. Evolution of Performance as a Function of K top 10.

Journal of Computer Science an Engineering (JCSE)
Vol. 5, No. 2, August 2024, pp. 116-136

e-ISSN 2721-0251

133
https://doi.org/10.36596/jcse.v5i2.870

Figure 10. Evolution of performance as a function of P top 10.

3.4. Results Comparisons with State of Art

After presenting the performance of the contributions on the different datasets, the authors propose

to test our vectorization paradigm on the RE '17 Data Challenge Area 2 [9] dataset, which focuses

on the identification of functional (FR) and non-functional (NFR) requirements. In the dataset, the

requirement text in the FR category is labelled with 'F' and NFR as 'A, L, LF, MN, O, PE, SC, SE,

US, FT, PO'. These are 625 requirements texts used as a data set. 56% of which belong to the NFR

class and the rest to the FR class.

They also applied our vectorization paradigm to the three other datasets (Wap, WebKB and Kla)

detailed in [8]. These datasets consist respectively of 1560, 4199, and 2340 documents divided into

20, 4 and 20 classes respectively. And also on WebKB datasets presented by [10] which is a

completed version of WebKB datasets [8] 'versions.

To conform to the work of [9], among the previously used machine learning algorithms, they have

chosen only Naive Bayes and SVM and the metrics Precision and F1-score. The table shown in figure

11 presents the best results obtained with the new vectorization paradigm (obtained with the OWDC

technique) on the data from [9], [8] and [10], compared with the results that they themselves

obtained. We can see that our results stand out for each of the combination cases, with a performance

Journal of Computer Science an Engineering (JCSE)
Vol. 5, No. 2, August 2024, pp. 116-136

e-ISSN 2721-0251

134
https://doi.org/10.36596/jcse.v5i2.870

improvement ranging from 2% for the NB-TFIDF combinations to 55% for the SVM-TFIDF

combinations.

Table 3. Comparison of the results of [10] on the RE'16 dataset and [8] and [9] on Wap, WebKB and Kla

datasets with our results on the same dataset.

 Precision F1-score

Datasets Works
NB-

D2V

NB-

TFIDF

SVM-

D2V

SVM-

TFIDF

NB-

D2V

NB-

TFIDF

SVM

-D2V

SVM-

TFIDF

RE'16
Tiun et al.,

[10]
82.11 93.48 83.46 31.2 82.55 91.13 73.47 38.42

RE'16
Class-Oriented

Vect.
95.11 93 94.33 86.67 92.45 93.94 93.37 87

Wap Jin et al., [8] *** *** *** *** *** *** 83.65 84.17

Wap
Class-Oriented

Vect.
91.12 89.52 90.04 90 91.07 89.69 92.37 90.21

WebKB Jin et al., [8] *** *** *** *** *** *** 86.04 87.56

WebKB
Cunha et al.,

[9]
*** *** *** *** *** *** *** 82.26

WebKB
Class-Oriented

Vect.
93.02 91.50 93.04 91.05 91.87 90.61 92.42 91.27

Kla Jin et al., [8] *** *** *** *** *** *** 86.28 87.02

Kla
Class-Oriented

Vect.
92.02 91.50 91.14 89.25 92.77 91.69 93.70 93.13

4. Conclusion

In this paper the authors propose a new text vectorization paradigm for text classification problems,

called class-oriented text classification. The aim of this paradigm is to improve the numerical

representation of text in order to increase the performance of text classification algorithms. They

therefore propose three strategies in this new paradigm: One strategy, based on word occurrence,

selects the most frequent words in a class to form the class-oriented document (called OC); another

strategy selects the words in the class-oriented document based on the ZIPF score, hence the name

ZIPF; and a final strategy that selects words for the class-oriented document based on word

recurrence in classes, but this time penalizing it with the number of classes in which the word appears,

to ensure that the selected keywords discriminate only one class, they call it OWDC.

To demonstrate the effectiveness of our contribution, experiments are conducted on a set of three

datasets named Monster, Nigham, Minajobs, with the classification models DT for Decision Tree,

NB for Naive Bayes, SVM for Support Vector Machine and TFM for Transformers (deep neural

networks with self-attention). The vectorization methods used on class-oriented documents were TF-

IDF and Doc2Vec combined with our class-oriented vectorization strategies including OC, ZIPF and

OWDC. To evaluate these experiments, we used the precision, MAP and F1-Score metrics and, as a

prelude to a recommendation, classification of job offers as top-N has been made with N having the

values 5, 10 and 50 in the classes used here as profiles.

At the end of the evaluation of these experiments, results which, for different vectorization strategies

of our contribution, improve the classical results have been obtained. For example, for the Naive

Bayes classifier, the improvement ranged from 19% to 22%, depending on the corpus and strategies

used (for our lowest performances), while for the transformers classifier, the improvement ranged

from 29% to 40%, depending on the corpus and strategies used.

In addition, to validate their work, we proposed to show that it can be applied to data other than job

offers. To this end, they compared themselves with the work of [9], [8] and [10] by experimenting

with their contribution on the datasets of [9], [8] and [10]. It emerges that in a general way they have

an increase in the performances going from 2% to 55%; which demonstrates the positive impact of

our contribution.

Journal of Computer Science an Engineering (JCSE)
Vol. 5, No. 2, August 2024, pp. 116-136

e-ISSN 2721-0251

135
https://doi.org/10.36596/jcse.v5i2.870

This work has enabled us to show that we can increase the performance of text classification

algorithms by taking classes into account during vectorization. In the future, we intend to tackle not

only text but also image and sound classification. In other words, we will be proposing a class-

oriented vectorization paradigm for images and sounds, in order to improve their classification.

Declaration of Interests, Data Availability, Ethical and Informed Consent for Data Used

For this article the authors guarantee that there are no personal, financial or relational conflicts of

interest that could influence the publication of this article.
The authors also guarantee that the data used can be made available to those who need it, on demand

for those datasets not yet on open platforms. And they declare that the data has been collected in a

way that does not violate any ethical rules.

References

[1] Y. Liang, H. Liu, and S. Zhang, "Micro‐blog sentiment classification using Doc2vec + SVM model with

data purification," The Journal of Engineering, vol. 2020, no. 13, 2020. doi: 10.1049/joe.2019.1159

[2] J. Chen, Z. Gong, and W. Liu, "A Dirichlet process biterm-based mixture model for short text stream

clustering," Applied Intelligence, vol. 50, no. 5, 2020. doi: 10.1007/s10489-019-01606-1

[3] C. Storey and D. E. O’Leary, “Text Analysis of Evolving Emotions and Sentiments in COVID-19 Twitter

Communication,” Cognitive Computation, vol. 16, no. 4. Springer Science and Business Media LLC, pp.

1834–1857, Jul. 28, 2022. doi: 10.1007/s12559-022-10025-3.

[4] M. A. Calijorne Soares and F. S. Parreiras, "A literature review on question answering techniques,

paradigms and systems," Journal of King Saud University - Computer and Information Sciences, vol. 32,

no. 6, 2020. doi: 10.1016/j.jksuci.2018.08.005

[5] M. Hao, B. Xu, J. Y. Liang, B. W. Zhang, and X. C. Yin, "Chinese short text classification with mutual-

attention convolutional neural networks," ACM Transactions on Asian and Low-Resource Language

Information Processing, vol. 19, no. 5, 2020. doi: 10.1145/3388970

[6] J. Parmar, S. S. Chouhan, and V. Raychoudhury, "A machine learning based framework to identify unseen

classes in open-world text classification," Information Processing and Management, vol. 60, no. 2, 2023.

doi: 10.1016/j.ipm.2022.103214

[7] S. Akter, N. Nawal, A. Dey, and A. Das, "Analyzing the IT job market and classifying IT jobs using

machine learning algorithms," in Applied Intelligence for Industry 4.0, 2023. doi:

10.1201/9781003256083-19

[8] L. Jin, L. Zhang, and L. Zhao, "Feature selection based on absolute deviation factor for text classification,"

Information Processing and Management, vol. 60, no. 3, 2023. doi: 10.1016/j.ipm.2022.103251

[9] W. Cunha, S. Canuto, F. Viegas, T. Salles, C. Gomes, V. Mangaravite, E. Resende, T. Rosa, M. A.

Gonçalves, and L. Rocha, "Extended pre-processing pipeline for text classification: On the role of meta-

feature representations, sparsification and selective sampling," Information Processing and Management,

vol. 57, no. 4, 2020. doi: 10.1016/j.ipm.2020.102263

[10] S. Tiun, U. A. Mokhtar, S. H. Bakar, and S. Saad, "Classification of functional and non-functional

requirement in software requirement using Word2vec and fast Text," Journal of Physics: Conference

Series, vol. 1529, no. 4, 2020. doi: 10.1088/1742-6596/1529/4/042077

[11] A. Nigam, A. Roy, H. Singh, and H. Waila, "Job recommendation through progression of job selection,"

in Proc. of 2019 6th IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS

2019), 2019. doi: 10.1109/CCIS48116.2019.9073723

[12] M. Afandi and K. N. Isnaini, "Analyzing Public Trust in Presidential Election Surveys: A Study Using

SVM and Logistic Regression on Social Media Comments," Journal of Computer Science and

Engineering (JCSE), vol. 5, no. 1, pp. 1-11, 2024.

[13] P. Atanasova, J. G. Simonsen, C. Lioma, and I. Augenstein, "A diagnostic study of explainability

techniques for text classification," in EMNLP 2020 - 2020 Conference on Empirical Methods in Natural

Language Processing, 2020. doi: 10.1007/978-3-031-51518-7_7

Journal of Computer Science an Engineering (JCSE)
Vol. 5, No. 2, August 2024, pp. 116-136

e-ISSN 2721-0251

136
https://doi.org/10.36596/jcse.v5i2.870

[14] J. Hjort and J. Poulsen, "The arrival of fast internet and employment in Africa," American Economic

Review, vol. 109, no. 3, 2019. doi: 10.1257/aer.20161385

[15] F. Suvankulov, M. C. K. Lau, and F. H. C. Chau, "Job search on the internet and its outcome," Internet

Research, vol. 22, no. 3, 2012. doi: 10.1108/10662241211235662

[16] G. Wabo, A. Nzekon, F. Sosso, and X. Djam, "Vectorization on class-oriented documents for job

recommendation based on supervised machine learning models," in CARI 2022, Yaoundé, Cameroon,

2022.

[17] T. Sabri, O. el Beggar, and M. Kissi, "Comparative study of Arabic text classification using feature

vectorization methods," Procedia Computer Science, vol. 198, 2021. doi: 10.1016/j.procs.2021.12.239

[18] K. Kowsari, K. J. Meimandi, M. Heidarysafa, S. Mendu, L. Barnes, and D. Brown, "Text classification

algorithms: A survey," Information, vol. 10, no. 4, 2019. doi: 10.3390/info10040150

[19] K. N. Prafajar, H. Vallyan, N. L. P. A. Candradewi, I. S. Edbert, and D. Suhartono, "Multiclass Job

Recommendation System in the IT Field between Classification and Prediction Method," in 2022

International Conference on Green Energy, Computing and Sustainable Technology (GECOST 2022),

2022. doi: 10.1109/GECOST55694.2022.10010659

[20] O. Ben-Porat, S. Hirsch, L. Kuchy, G. Elad, R. Reichart, and M. Tennenholtz, "Predicting strategic

behavior from free text," Journal of Artificial Intelligence Research, vol. 68, 2020. doi:

10.1613/JAIR.1.11849

[21] A. Shen, B. Salehi, J. Qi, and T. Baldwin, "A multimodal approach to assessing document quality,"

Journal of Artificial Intelligence Research, vol. 68, 2020. doi: 10.1613/JAIR.1.11647

[22] B. Xing and I. W. Tsang, "Exploiting Contextual Target Attributes for Target Sentiment Classification,"

Journal of Artificial Intelligence Research, vol. 80, pp. 419–439, Jun. 2024. doi: 10.1613/jair.1.14947

[23] B. Charbuty and A. Abdulazeez, "Classification Based on Decision Tree Algorithm for Machine

Learning," Journal of Applied Science and Technology Trends, vol. 2, no. 01, 2021. doi:

10.38094/jastt20165

[24] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin,

"Attention is all you need," in Advances in Neural Information Processing Systems, 2017, pp. 5998-6008.

[25] A. K. Uysal and S. Gunal, "The impact of preprocessing on text classification," Information Processing

and Management, vol. 50, no. 1, 2014. doi: 10.1016/j.ipm.2013.08.006

[26] V. Wisdom and R. Gupta, "An introduction to twitter data analysis in python," Artigence Inc, 2016.

[27] J. Perkins, Python Text Processing with NLTK 2.0 Cookbook, 2010.

[28] L. Singh, "Clustering Text: A Comparison Between Available Text Vectorization Techniques," 2022.

doi: 10.1007/978-981-16-1249-7_3

[29] B. Habert and M. Jardino, "R. Harald Baayen — Word Frequency Distributions. Text, Speech and

Language Technology n°18, Dordrecht : Kluwer Academic Publishers, 2001, 334 p. + 1 CD-Rom,"

Corpus, vol. 2, 2003. doi: 10.4000/corpus.42

[30] D. Valcarce, A. Bellogín, J. Parapar, and P. Castells, "Assessing ranking metrics in top-N

recommendation," Information Retrieval Journal, vol. 23, no. 4, 2020. doi: 10.1007/s10791-020-09377-

x

[31] M. A. Hambali, M. D. Gbolagade, and Y. A. Olasupo, "Heart Disease Prediction Using Principal

Component Analysis and Decision Tree Algorithm," Journal of Computer Science and Engineering

(JCSE), vol. 4, no. 1, 2023.

[32] R. Egger, “Text Representations and Word Embeddings,” Tourism on the Verge. Springer International

Publishing, pp. 335–361, 2022. doi: 10.1007/978-3-030-88389-8_16.

