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The Plasmodium parasite, which spreads through the bite of the Anopheles 

mosquito, causes malaria, a significant global health concern. Notwithstanding 

attempts to curtail its proliferation, malaria continues to be a predominant 

cause of mortality in tropical nations, especially in Sub-Saharan Africa and 

certain regions of Southeast Asia. Timely identification and precise diagnosis 

are essential for effective treatment. This research seeks to create a malaria 

classification model using deep learning based on the EfficientNetV2B0 

architecture. The model is engineered to identify malaria parasite infections in 

microscopic images of erythrocytes. The dataset used is an open-source 

collection of photographs depicting red blood cells categorised as either 

infected or uninfected with malaria. The development method encompasses 

multiple critical stages, beginning with data collection, followed by 

preprocessing, data augmentation, and modelling using transfer learning with 

the EfficientNetV2B0 model. Bayesian optimisation is used to improve the 

model's accuracy by adjusting its hyperparameters. Assessment metrics, 

including accuracy, precision, recall, and F1-score, are used to evaluate the 

trained model's performance. The results show that the model has an accuracy 

of 96%, with equivalent precision, recall, and F1-scores for both the infected 

(under the heading "Parasitised") and uninfected (under the heading 

"Uninfected") groups. The model is extremely effective in diagnosing malaria, 

making it a valuable diagnostic tool for malaria control and prevention, 

especially in resource-constrained locations. 
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1. Introduction 

Malaria is an infectious disease affecting red blood cells caused by the Plasmodium parasite, 

which is transmitted to humans through the bite of an infected female Anopheles mosquito. The 

term "malaria" is derived from two Italian words, mal (meaning "bad") and aria (meaning "air"), 

implying "bad air," as it was formerly widespread in marshy locations that generated foul odours.  

This disease is also referred to as Roman fever, swamp fever, tropical fever, and paludism.  

Malaria is prevalent in almost all regions globally, especially in nations with tropical and 

subtropical climates [1]. 

Malaria is a significant public health concern in tropical regions such as Africa, Southeast Asia, 

and Central and South America, causing considerable morbidity and fatality rates.  A WHO 

analysis indicates that the global incidence of malaria cases in 2022 is projected to have exceeded 

the levels recorded before the COVID-19 epidemic in 2019.  The research underscores various 

vulnerabilities to the global malaria response, including climate change.  In 2022, almost 249 

million malaria cases were documented in 85 endemic nations, with an incidence rate of 58 cases 

per 1,000 at-risk adults.  In 2019, there were approximately 233 million global cases, with an 

incidence rate of 57 instances per 1,000 at-risk adults.  In 2022, case numbers exceeded the 
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objective established by the Global Technical Strategy for Malaria 2025 by 55%, which targeted 

for merely 26 cases per 1,000 individuals in the at-risk population by that year [2]. 

Malaria patients may be infected by one or more species of the Plasmodium parasite (mixed 

infection). The disease is generally marked by symptoms like fever, chills, headache, nausea, 

vomiting, and flu-like discomfort, with each malaria species potentially exhibiting distinct 

symptoms. Severe malaria can result in serious complications, including profound anaemia due 

to haemolysis, respiratory distress, hypoglycemia, altered consciousness, convulsions, coma, or 

neurological deficits. Efforts to manage the condition have persisted for an extended period. The 

existence of drug-resistant malaria parasites exacerbates efforts to eradicate the illness. 

Notwithstanding continuous prevention and treatment efforts, the early and precise identification 

of malaria cases continues to pose a problem, especially in resource-constrained regions. Current 

conventional diagnostic methods are inadequate, prompting the development of more efficient 

and precise detection techniques. Misidentification and misdiagnosis may contribute to a rise in 

malaria cases [3]. 

Recently, artificial intelligence technologies, especially deep learning, have demonstrated 

considerable potential in aiding malaria detection using microscopic blood cell imaging. A study 

by Rajaraman et al. revealed that Convolutional Neural Networks (CNNs) can successfully 

evaluate blood pictures and accurately detect the presence of malaria parasites [4]. Furthermore, 

the EfficientNet architecture model has proven to be superior in image classification with high 

efficiency, as shown in a study by Tan and Le [5]. 

This study seeks to establish a novel methodology for malaria diagnosis by analysing blood 

sample images via deep learning techniques with the expectation of enhancing accuracy in 

distinguishing positive from negative samples. We anticipate that this research will significantly 

improve malaria detection efforts and serve as a model for the development of AI-powered 

automated diagnostic systems  [6] [7]. 

 

2. Method 

The methodology used in this study to detect malaria-infected blood cells and classify them 

consists of four stages: data collection, data preprocessing and augmentation, modelling, and 

testing. The stages of this research are illustrated in Figure 1.  

 
Figure 1. The stages of research 



Journal of Computer Science an Engineering (JCSE) 
Vol. 6, No. 1, February 2025, pp. 37-47 

   e-ISSN 2721-0251 

 

39 

 

In the first stage, image data of blood cells to be used for detection are collected, which include 

two samples: healthy blood cells and infected blood cells. The collected data then proceeds to the 

preprocessing stage, which involves data splitting and augmentation to optimise the processing 

workflow. 

Modelling is performed using the EfficientNetV2B0 architecture as the base model, followed by 

fine-tuning. EfficientNetV2B0, as one of the models in the EfficientNet series, has proven to be 

effective in various image recognition applications, including the detection of malaria parasites 

in red blood cell images. After the model is developed, the testing and evaluation stage is 

conducted to assess the model's accuracy. This research uses the organised CRISP-DM (Cross-

Industry Standard Process for Data Mining) method to handle the classification problem, starting 

from gathering data all the way to evaluating the model. 

This study also applies techniques such as hyperparameter tuning to optimise training parameters, 

Bayesian optimisation to accelerate the search for the best parameter combinations, and the use 

of callbacks to monitor and manage the model training process. Through these key stages, the 

study aims to ensure accurate and optimal classification results in malaria detection using 

microscopic blood cell images. 

 

2.1 Data Collection and Dataset Description 

Data collection is one of the key stages in building a machine learning (ML) model. Accurate and 

high-quality data collection is essential to ensure the accuracy and effectiveness of the model to 

be developed. The CRISP-DM methodology provides a systematic framework for this process 

[8]. At this stage, the primary focus is on gathering relevant data sources for classification. 

The dataset used in this study is an open-source dataset available on the Kaggle platform titled 

"Cell Images for Detecting Malaria." This dataset is a collection of red blood cell images, both 

infected and non-infected with malaria, sourced from the National Library of Medicine, Lister 

Hill National Center for Biomedical Communication [9]. 

The dataset provides microscopic images of human blood cells, divided into two classes: infected 

(malaria-infected) and uninfected (non-infected). With a total of over 27,500 images, this dataset 

offers a variety of cell shapes and types, which is crucial for enhancing the model's ability to 

detect malaria. This variation allows the model to learn from different blood cell conditions, thus 

improving detection accuracy. The average resolution of the images is 64 x 64 pixels. The dataset 

is split into three main subsets with a 70:20:10 ratio, designed to ensure that the model is trained 

with sufficient data while still retaining enough data for validation and testing. The distribution is 

as follows: 

a. Training Set: 70% of the data is used for model training. 

b. Validation Set: 20% of the data is used for validation during model training. 

c. Test Set: 10% of the data is used for evaluation after model training. 

 

2.2 Data pre-processing and Augmentation 

Pre-processing is a crucial stage that needs to be performed to enhance the quality of data before 

it is input into the model. This process involves several steps, including normalization, resizing, 

and augmentation, all of which contribute to improving the performance of the ML model.  

 



Journal of Computer Science an Engineering (JCSE) 
Vol. 6, No. 1, February 2025, pp. 37-47 

   e-ISSN 2721-0251 

 

40 

 

Normalization is the process in which image pixels are transformed into a range of 0-1. The goal 

is to facilitate learning by the neural network. By performing normalization, the model can adapt 

and learn more quickly from the provided data, as a uniform input scale helps achieve faster 

convergence during training [5]. 

Resizing images is another important step in pre-processing. Images in the dataset often vary in 

size, so they need to be resized to a uniform dimension. In this context, the images will be resized 

to the same size, such as 64 x 64 pixels. This process not only reduces some details that may not 

be critical but also speeds up the learning process. According to Agustin (2023), resizing the 

dataset aims to accelerate the training and testing processes on convolutional neural networks 

(CNNs) [10].  

The last step is data augmentation, a technique used to create variations in the data samples, which 

is essential for avoiding overfitting. By performing augmentation, the model can learn from a 

broader range of variations, thereby improving its ability to generalize to new data. Common 

augmentation techniques include zooming, random image rotation within a specified range, and 

flipping. This helps create a more diverse dataset from a limited original set, thus enhancing the 

model's robustness [11]. 

  

Figure 2. Class Distribution Analysis 

Class distribution analysis is conducted to ensure the balance of the dataset, an essential factor in 

the development of machine learning models. The number of samples per class is calculated and 

visualized in a bar chart to detect potential data imbalance. Imbalance can lead the model to favor 

predicting the majority class, thus reducing performance on the minority class. If imbalance is 

detected, techniques such as oversampling, undersampling, or augmentation can be applied to 

enhance the representation of the minority class, ensuring that the model can learn patterns 

optimally and provide accurate predictions for all classes [12]. All labels are also processed in a 

categorical format, with class indices assigned as parasitized: 0 and uninfected: 1, ensuring 

consistency in the mapping of labels to numerical or numeric formats for multi-class 

classification. 

The dataset is divided into three main parts: training, validation, and testing. Seventy percent of 

the data is allocated for training, while the remaining 30% is further split into validation data 

(20%) and test data (10%). This process uses the 'train_test_split' function with the 'shuffle=True' 
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parameter to randomize the data before splitting and 'random_state=123' to ensure consistent data 

division across each execution. 

The use of 'ImageDataGenerator', which incorporates both preprocessing and data augmentation 

capabilities, is directly applied to the training, validation, and test data loaded through a data 

generator to increase the quantity and variability of the training data. Several transformations are 

applied, including pixel value normalization to a range of 0-1, random rotation up to 15 degrees, 

horizontal and vertical shifts, horizontal flipping, zoom adjustments up to 10%, and brightness 

adjustments within a range of 90%-110%. Any empty areas resulting from the transformations 

are filled using the nearest pixel values.  

 

Figure 3. Training Images 

The training data generator utilizes the prepared augmentations, with several parameters 

configured, such as resizing the target image to 64x64 pixels through the 'target_size=(64,64)' 

parameter. This size is small enough to accelerate model training without losing too many 

important details of the images. Additionally, a batch size of 32 and RGB color format (Red, 

Green, and Blue) are used. The data is also shuffled to ensure that the model does not learn any 

specific order patterns. 

 

Figure 4. Validation Images 

The 'plot_images' function is used to visualize 5 random samples from the images in each data 

subset using the generator, with the class labels displayed in Figure 4: Validation Images. In the 

validation data, random samples are shown to evaluate the model during testing. In contrast, for 

the validation data, only normalization is applied without augmentation, and the data is not 

shuffled to maintain the accuracy of the model evaluation, reflecting the model's true 

performance. This visualization is crucial to ensure that the validation data is well-distributed and 

properly represents the existing classes.  

 

Figure 5.  Test Images 
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The test data is used to measure the model's performance after training is completed and is used 

to evaluate the model's accuracy. In the test data, only normalization is applied without any 

augmentation, and the data is not shuffled to ensure that model evaluation is performed 

consistently. This visualization helps ensure that the test data is not biased, providing a reliable 

measure of the model’s generalization ability.  

 

2.3 Modeling 

In the modeling phase for malaria disease detection, a transfer learning approach using the pre-

trained EfficientNetV2B0 architecture was chosen as the primary method. The selection of this 

architecture is based on its lightweight nature and fast training time, while still maintaining 

optimal results [13]. Additionally, the base model of this architecture is capable of recognizing 

common features in images without the need for training from scratch. 

After selecting EfficientNetV2B0 as the base model, the next step is fine-tuning to adapt the 

model to the pre-existing dataset. By performing appropriate fine-tuning, the model can be 

customized to the prepared dataset, thus improving accuracy and efficiency in detecting malaria 

infections. The fine-tuning process involves several key steps, including adding a classification 

layer after the base model, configuring and adding dense layers, incorporating a dropout layer, 

and adding the final dense layer, which serves as the output layer [14]. 

The process of searching for optimal hyperparameters is carried out using a Bayesian 

Optimization approach, implemented through Keras Tuner. The 'build_model' function is used to 

construct the EfficientNetV2B0-based classification model architecture. This model uses pre-

trained weights from ImageNet, with the top layers removed to allow for fine-tuning. The 

hyperparameters tested include the number of units in the Dense layers, dropout rate, and learning 

rate, with the search space predefined. The final layer of the model is designed for multi-class 

classification with a softmax activation function. The entire configuration is optimized to 

maximize validation accuracy using the categorical cross-entropy loss function [10]. 

The tuning process involves training the model for three epochs on each hyperparameter 

combination, using the training and validation data. Early stopping is applied to halt the training 

early if no improvement is observed in the validation loss, while ensuring the best weights are 

saved. After tuning is completed, the best hyperparameters and model are evaluated using the 

validation data to calculate accuracy and loss [15]. The optimal hyperparameters, such as the 

number of units, dropout rate, and learning rate, are saved in JSON format to facilitate replication 

and reuse in further training or testing. This approach ensures that the resulting model has an 

optimal configuration for the best classification performance. 

After loading the best hyperparameters saved in the JSON file, the image classification model is 

built using the optimized parameters. The base model used is EfficientNetV2B0, pre-trained on 

the ImageNet dataset, with the classification top-layer removed to allow for fine-tuning. The 

loaded hyperparameters include the number of units in the Dense layers, dropout rate, and 

learning rate, which are applied to add custom classification layers. The first Dense layer is added 

with the number of units determined by the hyperparameter, followed by a Dropout layer to 

reduce overfitting. The output layer uses a softmax activation function to generate the probability 

distribution for each class. This structure ensures that the model can effectively learn from the 

training data and make accurate class predictions. 

The model is then assembled by connecting the input from the base model and the output from 

the classification layers. The Adam optimizer is used with the predefined learning rate, and the 

categorical cross-entropy loss function is applied for multi-class classification. Accuracy is used 
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as the metric to evaluate the model's performance. Once the model is fully assembled and 

compiled, the complete model structure, along with the number of parameters, is displayed to 

provide an overview of the architecture. This helps in understanding the design and complexity 

of the model. The model is then ready for further training and evaluation on the relevant dataset. 

Several callback strategies are used to optimise the model's training process. The first callback is 

EarlyStopping, which checks validation loss and stops training if no improvement is seen after a 

set number of epochs, returning the model weights to the best state discovered during training. 

The second callback is ReduceLROnPlateau, which cuts the learning rate when the validation loss 

stagnates in order to hasten the model's convergence. Additionally, ModelCheckpoint is used to 

save the best model throughout training, either as the full model or just the model weights, with 

monitoring of the validation loss to ensure that only the model with the best performance is saved. 

These callbacks help ensure efficient training and prevent overfitting by optimizing the model's 

learning process. 

The model training process is conducted with the utilization of several callbacks previously 

described, and the training duration is calculated to assess the time required. The start time of 

training is recorded before the training process begins, and the end time is calculated after the 

process is completed. The total training time is then displayed in minutes and seconds to provide 

an overview of the training efficiency. The model is trained for 50 epochs, with continuous 

monitoring of the validation loss to optimize the model according to the prevailing conditions. 

Next, the training history data, which contains information about the model's performance, 

including loss and accuracy for each epoch, is saved in JSON format. This storage allows for 

further analysis of the training process, with the data available for visualization or future model 

evaluation. By adopting this approach, all training-related information, including model 

performance and training duration, can be accessed and analyzed in greater detail once the training 

is completed. 

 

2.4 Testing and Evaluation 

After the model has passed through the modeling and training stages, it moves on to the testing 

and evaluation phase to assess its accuracy. Evaluation on the training data is essential to ensure 

that the trained model performs well and does not experience overfitting or underfitting. Through 

evaluation, the model’s learning process can be monitored to determine how it learns from the 

data and makes accurate predictions. To measure the model's performance, commonly used 

evaluation metrics include accuracy, recall, precision, and F1-Score [16]. 

 

2.4.1 Accuracy 

The previously saved JSON data can be used to analyse the model's performance. The accuracy 

result measures how often the model makes correct predictions. In general, it indicates the ratio 

of correct predictions to the total number of predictions. The formula for calculating accuracy is 

shown as (1). 

 

Accuracy = 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 x 100 (1)  

 

Where: 

TP : True Positive (The model correctly predicts positive samples)  

TN : True Negative (The model correctly predicts negative samples) 
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FP : False Positive (The model predicts positive samples that are actually negative) 

FN : False Negative (The model predicts negative samples that are actually positive) 

 

2.4.2 Recall 

Recall is a metric that measures how often the model correctly identifies true positives from all 

ground truth positives. This metric is used to extract the ratio of correctly identified positive 

instances to all actual positives in the ground truth. The formula for calculating recall is shown as 

formula (2). 

 

Recall = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

 

2.4.3 Precision 

Precision is an evaluation statistic that assesses a model's ability to correctly forecast positive 

samples. This measure is the ratio of true positives to all positive predictions, including false 

positives, using the following formula (3). 

 

Precision = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

 

2.4.4 F-1 Score 

The F1-score is a statistic that combines precision and recall to give a more complete picture of 

the model's performance. This statistic is very valuable when dealing with class imbalance, as 

precision or recall alone may not suffice. The F1-score goes from 0 to 1, with values near 1 

suggesting superior model performance in terms of precision and recall. The F1-score can be 

determined using the following formula (4). 

 

F-1 Score = 2 𝑥 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 

3. Results and Discussion 

The results of the training and evaluation of the malaria classification model based on 

EfficientNetV2B0 will be presented in this section. Additionally, an analysis of the model's 

performance will be provided, along with the factors that influenced these results. The discussion 

section will include the interpretation of the results and the accuracy level of the model.  

Overall, the research on the EfficientNetV2B0-based malaria classification model demonstrates 

excellent and satisfactory performance. For each class, 'Parasitized' and 'Uninfected', the model 

exhibits a good balance in detecting both classes, with a relatively low error rate. The model 

achieves an accuracy rate of 96%, indicating that it can classify images very effectively, whether 

they belong to the infected class ('Parasitized') or the non-infected class ('Uninfected').  

The precision for the 'Parasitized' class is higher (0.97) compared to the 'Uninfected' class (0.95). 

The higher precision in the 'Parasitized' class indicates that the model is more accurate in 

identifying images as infected. This is likely due to the larger number of samples in the 

'Parasitized' class (1,410 labels) compared to the 'Uninfected' class (1,345 labels). As a result, it 

can be concluded that the model interacted more frequently with data from the 'Parasitized' class 

during training, enhancing its ability to recognize 'Parasitized' images.  



Journal of Computer Science an Engineering (JCSE) 
Vol. 6, No. 1, February 2025, pp. 37-47 

   e-ISSN 2721-0251 

 

45 

 

However, the recall for the 'Uninfected' class is higher (0.97), which means the model performs 

better in detecting 'Uninfected' images. This indicates that, despite the 'Uninfected' class having 

fewer sample images, the model is still able to accurately detect these images. This suggests that 

the model is effective in identifying the 'Uninfected' class, even with a smaller sample size. 

The F1-Score shows a balanced value for both classes (0.96), indicating that the model in this 

study is not biased towards the more dominant class and is able to classify both classes accurately. 

This suggests that the model performs well in achieving a balance between precision and recall 

for both the 'Parasitized' and 'Uninfected' classes. 

Table 1. Model Performance Evaluation 

Class Labels 
Evaluation Metrics 

Precision Recall F-1 Score 

Parasitized 0.97 0.95 0.96 

Uninfected 0.95 0.97 0.96 

Accuracy     0.96 

Val Accuracy   0.95 

In Figure 6, the confusion matrix is presented to visualize the evaluation of recall and how the 

model classifies each label from the testing dataset. The results show that the model successfully 

predicted 95.39% of the parasitized samples correctly, demonstrating a high accuracy in detecting 

positive cases. However, there is a misclassification rate of 4.61%, where samples that were 

actually infected were incorrectly classified as uninfected. On the other hand, for the uninfected 

samples, the model performed excellently, correctly predicting 97.24% of those labels. 

Nonetheless, a misclassification rate of 2.76% occurred, where samples that were actually 

uninfected were mistakenly classified as parasitized. 

Based on this analysis, it can be concluded that the model exhibits strong capabilities in 

classifying both infected and uninfected samples with a relatively high accuracy. This highlights 

the model's potential for use in real-world applications, where accuracy and reliability in diagnosis 

are crucial, especially under supervised conditions. 

 

 Figure 6.  Confusion Matrix based on the testing dataset results 
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4. Conclusion 

This study demonstrates that the EfficientNetV2B0 model delivers excellent performance, 

achieving a high accuracy rating of 96% after hyperparameter tuning using Bayesian optimisation. 

These adjustments optimised an already well-trained model, improving its ability to detect 

malaria-infected blood cells. The approach is in line with recent research leveraging machine 

learning to enhance the efficiency, speed, and accuracy of disease detection. By utilising deep 

learning models such as EfficientNetV2B0, the identification of potential malaria infections can 

be performed much faster compared to traditional methods. This accelerates diagnostic time and 

improves accuracy, potentially making a significant impact on malaria control and prevention 

efforts. As a result, the research aims to contribute to the advancement of disease diagnosis 

technologies, making them more sophisticated and reliable, particularly in remote areas with 

limited medical resources. 
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