Comparison of the Accuracy of Sentiment Analysis on the Twitter of the DKI Jakarta Provincial Government during the COVID-19 Vaccine Time

Adi Winanto(1), Cahyani Budihartanti(2),


(1) Universitas Nusa Mandiri
(2) Universitas Nusa Mandiri,

Abstract


Currently, the Government is intensively utilizing social media, one of which is Twitter as a place of interaction with the community. The results of these interactions can be used as feedback to determine whether public opinion on public policies is positive or negative. Tweets from users can be a supporting parameter for the government in evaluating future policies and decision making by applying the sentiment analysis method. This study aims to determine positive or negative sentiments on user tweets against the official twitter account of the DKI Jakarta Provincial Government during the COVID19 vaccine period. The data obtained are 1658 lines from March 30 to April 5, 2021 with queries on tweets containing words or mentioning the username @dkijakarta, which will be grouped by sentiment class, namely negative and positive using the TF-IDF Vectorizer for word weighting and classification using several methods, namely, nave Bayes with accuracy values. 82.50% with class recall on positive sentiment 88% and negative 77% and in class precision showing positive at 79.28% and negative at 86.52% in the rapid miner application then k-NN with an accuracy value of 81.50% with class recall on positive sentiment 85% and negative 78% and class precision shows positive at 79.44% and negative at 83.87% in the rapid miner application. And the accuracy value of the best method in this training data classification comparison is nave Bayes, the results the end of testing the sample dataset using the nave Bayes method with 84.80% accuracy with class recall at 85.01% positive sentiment and 84.59% negative sentiment and at c lass precision shows positive at 85.21% and negative at 84.38% in rapid mining applications.

Keywords


Sentiment Analysis; Twitter; TFIDF; Classification

Full Text:

PDF

References


Shu, Sara, and Benjamin Kp Woo. “Use of technology and social media in dementia care: Current and future directions.” World journal of psychiatry vol. 11,4 109-123. 19 Apr. 2021, doi:10.5498/wjp.v11.i4.109

A. P. Sitorus, H. Murfi, S. Nurrohmah, and A. Akbar, “Sensing Trending Topics in Twitter for Greater Jakarta Area,” Int. J. Electr. Comput. Eng., vol. 7, no. 1, pp. 330–336, Feb. 2017, doi: 10.11591/ijece.v7i1.pp330-336

D. Wanto, Anjar, Data Mining : Algoritma dan Implementasi - Books, 1st ed. Yayasan kita menulis, 2020.

P. Arsi, R. Wahyudi, and R. Waluyo, “Optimasi SVM Berbasis PSO pada Analisis Sentimen Wacana Pindah Ibu Kota Indonesia ”, RESTI, vol. 5, no. 2, pp. 231 - 237, Apr. 2021. DOI: https://doi.org/10.29207/resti.v5i2.2698

Y. Cahyono, “Analisis Sentiment Pada Sosial Media Twitter Menggunakan Naїve Bayes Classifier Dengan Feature Selection Particle Swarm Optimization Dan Term Frequency,” J. Inform. Univ. PAMULANG, vol. 14, no. 1, 2017.

R. D. Himawan and E. Eliyani, “Perbandingan Akurasi Analisis Sentimen Tweet terhadap Pemerintah Provinsi DKI Jakarta di Masa Pandemi,” JEPIN (Jurnal Edukasi dan Penelit. Inform., vol. 7, no. 1, pp. 58–63, Apr. 2021, doi: 10.26418/JP.V7I1.41728.

D. Cucinotta and M. Vanelli, “WHO Declares COVID-19 a Pandemic.,” Acta Biomed., vol. 91, no. 1, pp. 157–160, Mar. 2020, doi: 10.23750/abm.v91i1.9397.

A. M. Kaplan and M. Haenlein, “Users of the world, unite! The challenges and opportunities of Social Media,” Bus. Horiz., vol. 53, no. 1, pp. 59–68, 2010, doi: 10.1016/j.bushor.2009.09.003.

R. Feldman and J. Sanger, The Text Mining Handbook, 1st ed. United States of America by Cambridge University Press, New York, 2006.

R. Wahyudi, G. Kusumawardana, "Analisis Sentimen pada Aplikasi Grab di Google Play Store Menggunakan Support Vector Machine", Jurnal Informatika. vol 8, no 2. 2021. DOI: https://doi.org/10.31294/ji.v8i2.9681

P. A. Aquino, V. F. Lopez, M. N. Moreno, M. D. Munoz, S. Rodriguez. "Opinion Mining System for Twitter Sentiment Analysis" Hybrid Artificial Intelligent Systems. HAIS 2020. Lecture Notes in Computer Science, vol 12344. Springer, Cham. https://doi.org/10.1007/978-3-030-61705-9_38

P. Nambisan, Z. Luo, A. Kapoor, T. B. Patrick, and R. A. Cisler, “Social media, big data, and public health informatics: Ruminating behavior of depression revealed through twitter,” Proc. Annu. Hawaii Int. Conf. Syst. Sci., vol. 2015-March, pp. 2906–2913, 2015, doi: 10.1109/HICSS.2015.351.

A. R. T. Lestari, R. S. Perdana, and M. A. Fauzi, “Analisis Sentimen Tentang Opini Pilkada DKI 2017 Pada Dokumen Twitter Berbahasa Indonesia Menggunakan Näive Bayes dan Pembobotan Emoji,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 1, no. 12, pp. 1718–1724, 2017, [Online]. Available: http://j-ptiik.ub.ac.id.

D. M. Diab and K. M. El Hindi, “Using Differential Evolution for Fine Tuning Nave Bayesian Classifiers and Its Application for Text Classification,” Appl. Soft Comput., vol. 54, no. C, pp. 183–199, May 2017, doi: 10.1016/j.asoc.2016.12.043.

J. Riany, M. Fajar, and M. P. Lukman, “Penerapan Deep Sentiment Analysis pada Angket Penilaian Terbuka Menggunakan K-Nearest Neighbor,” Sisfo, vol. 06, no. 01, pp. 147–156, 2016, doi: 10.24089/j.sisfo.2016.09.011.


Refbacks

  • There are currently no refbacks.


Journal of Computer Science and Engineering (JCSE)
ISSN 2721-0251 (online)
Published by : ICSE (Institute of Computer Sciences and Engineering)
Website : http://icsejournal.com/index.php/JCSE/
Email: jcse@icsejournal.com

Creative Commons License is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.