An Integrated Approach for Diabetes Detection Using Fisher Score Feature Selection and Capsule Network
(1) BRAC University
(2) American International University – Bangladesh (AIUB)
(3) BRAC University
(4) University of Texas at Arlington
(5) Tomsk State University
Abstract
Keywords
Full Text:
PDFReferences
V. P, N. swamy P, and V. P, “Review on diabetes mellitus,” Journal of Innovations in Applied Pharmaceutical Science (JIAPS), pp. 24–27, Jan. 2022, doi: 10.37022/jiaps.v7i1.273.
N. G. Forouhi and N. J. Wareham, “Epidemiology of diabetes,” Medicine, vol. 38, no. 11, pp. 602–606, Nov. 2010, doi: 10.1016/j.mpmed.2010.08.007.
Shivashankar, Murugesh, and Dhandayuthapani Mani. "A brief overview of diabetes." International Journal of Pharmacy and Pharmaceutical Sciences 3.4 (2011): 22-27.
A. D. Wright, “What is diabetes?,” in Diabetic Retinopathy: Screening to Treatment (Oxford Diabetes Library), Oxford University Press, 2020, pp. 1–6. doi: 10.1093/med/9780198834458.003.0001.
C. T. Wasnik, “Machine Learning Techniques: A Review,” Int J Res Appl Sci Eng Technol, vol. 7, no. 5, pp. 3091–3095, May 2019, doi: 10.22214/ijraset.2019.5510.
M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives, and prospects,” Science (1979), vol. 349, no. 6245, pp. 255–260, Jul. 2015, doi: 10.1126/science.aaa8415.
T. Dietterich, “Machine learning,” ACM Comput Surv, vol. 28, no. 4es, p. 3, Dec. 1996, doi: 10.1145/242224.242229.
P. Singh, “Supervised Machine Learning,” in Learn PySpark, Berkeley, CA: Apress, 2019, pp. 117–159. doi: 10.1007/978-1-4842-4961-1_6.
K. Sindhu Meena and S. Suriya, “A Survey on Supervised and Unsupervised Learning Techniques,” in Proceedings of International Conference on Artificial Intelligence, Smart Grid and Smart City Applications, Cham: Springer International Publishing, 2020, pp. 627–644. doi: 10.1007/978-3-030-24051-6_58.
R. J. Tallarida and R. B. Murray, “Linear Regression I,” in Manual of Pharmacologic Calculations, New York, NY: Springer New York, 1987, pp. 10–13. doi: 10.1007/978-1-4612-4974-0_4.
S. Suthaharan, “Support Vector Machine,” 2016, pp. 207–235. doi: 10.1007/978-1-4899-7641-3_9.
L. Breiman, “Machine Learning,” Mach Learn, vol. 45, no. 1, pp. 5–32, 2001, doi: 10.1023/A:1010933404324.
P. Cichosz, “Naïve Bayes classifier,” in Data Mining Algorithms, Chichester, UK: John Wiley & Sons, Ltd, 2015, pp. 118–133. doi: 10.1002/9781118950951.ch4.
P. N. Thotad, G. R. Bharamagoudar, and B. S. Anami, “Diabetes disease detection and classification on Indian demographic and health survey data using machine learning methods,” Diabetes & Metabolic Syndrome: Clinical Research & Reviews, vol. 17, no. 1, p. 102690, Jan. 2023, doi: 10.1016/j.dsx.2022.102690.
B. Everitt, “Cluster analysis,” Qual Quant, vol. 14, no. 1, pp. 75–100, Jan. 1980, doi: 10.1007/BF00154794.
G. Roșu and T. F. Șerbănută, “An overview of the K semantic framework,” J Log Algebr Program, vol. 79, no. 6, pp. 397–434, Aug. 2010, doi: 10.1016/j.jlap.2010.03.012.
Wasilewska, A. "Apriori Algorithm–Lecture Notes." Lecture Notes (2014).
H. U. R. Siddiqui et al., “Enhancing Cricket Performance Analysis with Human Pose Estimation and Machine Learning,” Sensors, vol. 23, no. 15, p. 6839, Aug. 2023, doi: 10.3390/s23156839.
S. Nasim, M. S. Almutairi, K. Munir, A. Raza, and F. Younas, “A Novel Approach for Polycystic Ovary Syndrome Prediction Using Machine Learning in Bioinformatics,” IEEE Access, vol. 10, pp. 97610–97624, 2022, doi: 10.1109/ACCESS.2022.3205587.
A. Al-Zebari and A. Sengur, “Performance Comparison of Machine Learning Techniques on Diabetes Disease Detection,” in 2019 1st International Informatics and Software Engineering Conference (UBMYK), IEEE, Nov. 2019, pp. 1–4. doi: 10.1109/UBMYK48245.2019.8965542.
T. Sharma and M. Shah, “A comprehensive review of machine learning techniques on diabetes detection,” Vis Comput Ind Biomed Art, vol. 4, no. 1, p. 30, Dec. 2021, doi: 10.1186/s42492-021-00097-7.
S. Gujral, “Early Diabetes Detection using Machine Learning: A Review,” IJIRST-International Journal for Innovative Research in Science & Technology|, vol. 3, no. 10, 2017, [Online]. Available: www.ijirst.org
S. Y. Rubaiat, M. M. Rahman, and Md. K. Hasan, “Important Feature Selection & Accuracy Comparisons of Different Machine Learning Models for Early Diabetes Detection,” in 2018 International Conference on Innovation in Engineering and Technology (ICIET), IEEE, Dec. 2018, pp. 1–6. doi: 10.1109/CIET.2018.8660831.
R. Katarya and S. Jain, “Comparison of Different Machine Learning Models for diabetes detection,” in 2020 IEEE International Conference on Advances and Developments in Electrical and Electronics Engineering (ICADEE), IEEE, Dec. 2020, pp. 1–5. doi: 10.1109/ICADEE51157.2020.9368899.
M. S. Tahsin, M. Jobayer, Md. B. U. Antor, M. Islam, F. F. Raisa, and Md. A. H. Shaikat, “Predictive Analysis & Brief Study of Early-Stage Diabetes Using Multiple Classifier Models,” in 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC), IEEE, Jan. 2022, pp. 0203–0207. doi: 10.1109/CCWC54503.2022.9720736.
D. Berrar, “Cross-validation,” in Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, Elsevier, 2018, pp. 542–545. doi: 10.1016/B978-0-12-809633-8.20349-X.
S. Aronoff, “Classification Accuracy: A User Approach.”
A. A. Al Jarullah, “Decision tree discovery for the diagnosis of type II diabetes,” in 2011 International Conference on Innovations in Information Technology, IEEE, Apr. 2011, pp. 303–307. doi: 10.1109/INNOVATIONS.2011.5893838.
J. Han, J. C. Rodriguez, and M. Beheshti, “Discovering Decision Tree Based Diabetes Prediction Model,” 2009, pp. 99–109. doi: 10.1007/978-3-642-10242-4_9.
F. Li and Y. Yang, “Analysis of recursive feature elimination methods,” in Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval, New York, NY, USA: ACM, Aug. 2005, pp. 633–634. doi: 10.1145/1076034.1076164.
R. Leardi, R. Boggia, and M. Terrile, “Genetic algorithms as a strategy for feature selection,” J Chemom, vol. 6, no. 5, pp. 267–281, Sep. 1992, doi: 10.1002/cem.1180060506.
M. B. Kursa and W. R. Rudnicki, “Feature Selection with the Boruta Package,” J Stat Softw, vol. 36, no. 11, 2010, doi: 10.18637/jss.v036.i11.
J. Sadhasivam, V. Muthukumaran, J. Thimmia Raja, R. B. Joseph, M. Munirathanam, and J. M. Balajee, “Diabetes disease prediction using decision tree for feature selection,” J Phys Conf Ser, vol. 1964, no. 6, p. 062116, Jul. 2021, doi: 10.1088/1742-6596/1964/6/062116.
S. Benbelkacem and B. Atmani, “Random Forests for Diabetes Diagnosis,” in 2019 International Conference on Computer and Information Sciences (ICCIS), IEEE, Apr. 2019, pp. 1–4. doi: 10.1109/ICCISci.2019.8716405.
N. Zaaboub And A. Douik, “Early Diagnosis of Diabetic Retinopathy using Random Forest Algorithm,” in 2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), IEEE, Sep. 2020, pp. 1–5. doi: 10.1109/ATSIP49331.2020.9231795.
P. Ghosh, S. Azam, A. Karim, M. Hassan, K. Roy, and M. Jonkman, “A Comparative Study of Different Machine Learning Tools in Detecting Diabetes,” Procedia Comput Sci, vol. 192, pp. 467–477, 2021, doi: 10.1016/j.procs.2021.08.048.
D. Sisodia and D. S. Sisodia, “Prediction of Diabetes using Classification Algorithms,” Procedia Comput Sci, vol. 132, pp. 1578–1585, 2018, doi: 10.1016/j.procs.2018.05.122.
O. Somantri, “An Optimize Weights Naïve Bayes Model for Early Detection of Diabetes,” Telematika, vol. 15, no. 1, Feb. 2022, doi: 10.35671/telematika.v15i1.1307.
T. P. Kamble, “Diabetes Detection using Deep Learning Approach”, [Online]. Available: www.ijirst.org
L. V. R. Kumari, P. Shreya, M. Begum, T. P. Krishna, and M. Prathibha, “Machine Learning based Diabetes Detection,” in 2021 6th International Conference on Communication and Electronics Systems (ICCES), IEEE, Jul. 2021, pp. 1–5. doi: 10.1109/ICCES51350.2021.9489058.
M. T. García-Ordás, C. Benavides, J. A. Benítez-Andrades, H. Alaiz-Moretón, and I. García-Rodríguez, “Diabetes detection using deep learning techniques with oversampling and feature augmentation,” Comput Methods Programs Biomed, vol. 202, p. 105968, Apr. 2021, doi: 10.1016/j.cmpb.2021.105968.
T. A. Assegie and S. Nair, “The Performance Of Different Machine Learning Models On Diabetes Prediction,” International Journal Of Scientific & Technology Research, vol. 9, p. 1, 2020, [Online]. Available: www.ijstr.org
P. Nagaraj and P. Deepalakshmi, “Diabetes Prediction Using Enhanced SVM and Deep Neural Network Learning Techniques,” International Journal of Healthcare Information Systems and Informatics, vol. 16, no. 4, pp. 1–20, Sep. 2021, doi: 10.4018/IJHISI.20211001.oa25.
C.-Y. Chou, D.-Y. Hsu, and C.-H. Chou, “Predicting the Onset of Diabetes with Machine Learning Methods,” J Pers Med, vol. 13, no. 3, p. 406, Feb. 2023, doi: 10.3390/jpm13030406.
R. M. S, S. H. S, and S. M. S, “Machine Learning Algorithms for the Detection of Diabetes,” International Research Journal of Engineering and Technology, 2021, [Online]. Available: www.irjet.net
A. R. Kulkarni et al., “Machine-learning algorithm to non-invasively detect diabetes and pre-diabetes from electrocardiogram,” BMJ Innov, vol. 9, no. 1, pp. 32–42, Jan. 2023, doi: 10.1136/bmjinnov-2021-000759.
M. M. F. Islam, R. Ferdousi, S. Rahman, and H. Y. Bushra, “Likelihood Prediction of Diabetes at Early Stage Using Data Mining Techniques,” 2020, pp. 113–125. doi: 10.1007/978-981-13-8798-2_12.
N. Xiao, Z. Wang, Y. Huang, F. Daneshgari, and G. Liu, “Roles of Polyuria and Hyperglycemia in Bladder Dysfunction in Diabetes,” Journal of Urology, vol. 189, no. 3, pp. 1130–1136, Mar. 2013, doi: 10.1016/j.juro.2012.08.222.
L. Ahmadi and M. B. Goldman, “Primary polydipsia: Update,” Best Pract Res Clin Endocrinol Metab, vol. 34, no. 5, p. 101469, Sep. 2020, doi: 10.1016/j.beem.2020.101469.
E. A. Homan, M. V. Reyes, K. T. Hickey, and J. P. Morrow, “Clinical Overview of Obesity and Diabetes Mellitus as Risk Factors for Atrial Fibrillation and Sudden Cardiac Death,” Front Physiol, vol. 9, Jan. 2019, doi: 10.3389/fphys.2018.01847.
H. Andersen, “Motor dysfunction in diabetes,” Diabetes Metab Res Rev, vol. 28, pp. 89–92, Feb. 2012, doi: 10.1002/dmrr.2257.
L. Hernandez and E. Briese, “Analysis of diabetic hyperphagia and polydipsia,” Physiol Behav, vol. 9, no. 5, pp. 741–746, Nov. 1972, doi: 10.1016/0031-9384(72)90044-3.
S. Kumar, A. J. Costello, and P. G. Colman, “Fournier’s gangrene in a man on empagliflozin for treatment of Type 2 diabetes,” Diabetic Medicine, vol. 34, no. 11, pp. 1646–1648, Nov. 2017, doi: 10.1111/dme.13508.
J. Xue, F. Min, and F. Ma, “Research on Diabetes Prediction Method Based on Machine Learning,” J Phys Conf Ser, vol. 1684, p. 012062, Nov. 2020, doi: 10.1088/1742-6596/1684/1/012062.
J. A. Vazquez and J. D. Sobel, “FUNGAL INFECTIONS IN DIABETES,” Infect Dis Clin North Am, vol. 9, no. 1, pp. 97–116, Mar. 1995, doi: 10.1016/S0891-5520(20)30642-5.
D. H. C. Surridge et al., “Psychiatric Aspects of Diabetes Mellitus,” British Journal of Psychiatry, vol. 145, no. 3, pp. 269–276, Sep. 1984, doi: 10.1192/bjp.145.3.269.
R. Blakytny and E. Jude, “The molecular biology of chronic wounds and delayed healing in diabetes,” Diabetic Medicine, vol. 23, no. 6, pp. 594–608, Jun. 2006, doi: 10.1111/j.1464-5491.2006.01773.x.
J. Ma, “Machine Learning in Predicting Diabetes in the Early Stage,” in 2020 2nd International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), IEEE, Oct. 2020, pp. 167–172. doi: 10.1109/MLBDBI51377.2020.00037.
G. B. Salsich, M. Brown, and M. J. Mueller, “Relationships Between Plantar Flexor Muscle Stiffness, Strength, and Range of Motion in Subjects With Diabetes-Peripheral Neuropathy Compared to Age-Matched Controls,” Journal of Orthopaedic & Sports Physical Therapy, vol. 30, no. 8, pp. 473–483, Aug. 2000, doi: 10.2519/jospt.2000.30.8.473.
L.-H. Su, L.-S. Chen, S.-C. Lin, and H.-H. Chen, “Association of Androgenetic Alopecia With Mortality From Diabetes Mellitus and Heart Disease,” JAMA Dermatol, vol. 149, no. 5, p. 601, May 2013, doi: 10.1001/jamadermatol.2013.130.
S. Verma and M. E. Hussain, “Obesity and diabetes: An update,” Diabetes & Metabolic Syndrome: Clinical Research & Reviews, vol. 11, no. 1, pp. 73–79, Jan. 2017, doi: 10.1016/j.dsx.2016.06.017.
M. Gan and L. Zhang, “Iteratively local fisher score for feature selection,” Applied Intelligence, vol. 51, no. 8, pp. 6167–6181, Aug. 2021, doi: 10.1007/s10489-020-02141-0.
Q. Gu, Z. Li, and J. Han, “Generalized Fisher Score for Feature Selection.”
J. Li et al., “A Survey on Capsule Networks: Evolution, Application, and Future Development,” in 2021 International Conference on High Performance Big Data and Intelligent Systems (HPBD&IS), IEEE, Dec. 2021, pp. 177–185. doi: 10.1109/HPBDIS53214.2021.9658349.
M. Islam, M. S. Tahsin, F. Alam, S. S. Hossain, A. Deb, and S. Kar, “Understanding Convolutional Neural Network’s behavior for Alzheimer’s disease on MRI,” in 2022 IEEE 13th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), IEEE, Oct. 2022, pp. 0179–0185. doi: 10.1109/IEMCON56893.2022.9946529.
R. Shi and L. Niu, “A brief survey on Capsule Network,” in 2020 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), IEEE, Dec. 2020, pp. 682–686. doi: 10.1109/WIIAT50758.2020.00103.
S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic Routing Between Capsules.”
J. Tao, X. Zhang, X. Luo, Y. Wang, C. Song, and Y. Sun, “Adaptive Capsule Network,” Computer Vision and Image Understanding, vol. 218, p. 103405, Apr. 2022, doi: 10.1016/j.cviu.2022.103405.
M. Kwabena Patrick, A. Felix Adekoya, A. Abra Mighty, and B. Y. Edward, “Capsule Networks – A survey,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 1, pp. 1295–1310, Jan. 2022, doi: 10.1016/j.jksuci.2019.09.014.
D. Chicco and G. Jurman, “The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation,” BMC Genomics, vol. 21, no. 1, p. 6, Dec. 2020, doi: 10.1186/s12864-019-6413-7.
J. Davis and M. Goadrich, “The relationship between Precision-Recall and ROC curves,” in Proceedings of the 23rd international conference on Machine learning - ICML ’06, New York, New York, USA: ACM Press, 2006, pp. 233–240. doi: 10.1145/1143844.1143874.
M. Sokolova, N. Japkowicz, and S. Szpakowicz, “Beyond Accuracy, F-Score and ROC: A Family of Discriminant Measures for Performance Evaluation,” 2006, pp. 1015–1021. doi: 10.1007/11941439_114.
T. Fawcett, “An introduction to ROC analysis,” Pattern Recognit Lett, vol. 27, no. 8, pp. 861–874, Jun. 2006, doi: 10.1016/j.patrec.2005.10.010.
L. Gonçalves, A. Subtil, M. R. Oliveira, and P. de Z. Bermudez, “ROC curve estimation: An overview,” REVSTAT-Statistical Journal, vol. 12, no. 1, 2014.
M. Sokolova and G. Lapalme, “A systematic analysis of performance measures for classification tasks,” Inf Process Manag, vol. 45, no. 4, pp. 427–437, Jul. 2009, doi: 10.1016/j.ipm.2009.03.002.
T. R. Shultz et al., “Confusion Matrix,” in Encyclopedia of Machine Learning, Boston, MA: Springer US, 2011, pp. 209–209. doi: 10.1007/978-0-387-30164-8_157.
B. E. Wampold, “Kappa as a measure of pattern in sequential data,” Qual Quant, vol. 23, no. 2, pp. 171–187, Jun. 1989, doi: 10.1007/BF00151902.
J. Cohen, “A Coefficient of Agreement for Nominal Scales,” Educ Psychol Meas, vol. 20, no. 1, pp. 37–46, Apr. 1960, doi: 10.1177/001316446002000104.
Zhou Wang and A. C. Bovik, “Mean squared error: Love it or leave it? A new look at Signal Fidelity Measures,” IEEE Signal Process Mag, vol. 26, no. 1, pp. 98–117, Jan. 2009, doi: 10.1109/MSP.2008.930649.
T. Chai and R. R. Draxler, “Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature,” Geosci Model Dev, vol. 7, no. 3, pp. 1247–1250, Jun. 2014, doi: 10.5194/gmd-7-1247-2014.
C. Willmott and K. Matsuura, “Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance,” Clim Res, vol. 30, pp. 79–82, 2005, doi: 10.3354/cr030079.
Refbacks
- There are currently no refbacks.
Published by : ICSE (Institute of Computer Sciences and Engineering)
Website : http://icsejournal.com/index.php/JCSE/
Email: jcse@icsejournal.com
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.