Analyzing Public Trust in Presidential Election Surveys: A Study Using SVM and Logistic Regression on Social Media Comments

Marcel Afandi(1), Khairunnisak Nur Isnaini(2),


(1) Universitas Amikom Purwokerto
(2) Universitas Amikom Purwokerto

Abstract


In the context of democracy in Indonesia, elections play a crucial role, and survey agencies often publish their results on social media. User responses, especially from voters, often express dissatisfaction, including distrust, insults, and negative comments, if the candidate they support receives low survey results. Therefore, this study aims to examine the level of public trust in the survey results of Presidential candidates in 2024 using the Support Vector Machine (SVM) and Logistic Regression algorithms. The study utilized data from 1778 Instagram comments and 985 Twitter tweets. The process involved problem identification, data collection, and system implementation, such as preprocessing, labeling, SMOTE, TF-IDF, data splitting, model classification, and evaluation. The results show that SVM with an 80% training data and 20% test data scenario provides high accuracy, namely 93.19% from Instagram and 91.19% from Twitter. Logistic Regression, with the highest accuracy of 89.79% from Instagram and 88.01% from Twitter in the same scenario. Sentiment analysis using SVM scenario one resulted in 195 positive comments and 216 negative comments. Logistic Regression scenario one shows 180 positive sentiments and 216 negative sentiments. From the classification results, it can be concluded that the level of public trust tends to be negative towards the survey results of the 2024 Presidential candidates, both using SVM and Logistic Regression.

Keywords


Election Survey Results; Sentiment Analysis; Support Vector Machine; Logistic Regression

Full Text:

PDF

References


Y. A. Aliano and M. J. Adon, “Percaturan Politik Genealogi Kekuasaan dalam Sistem Pemilu ‘ 2024 ’ di Indonesia Menurut Etika Michel Foucault,” J. Filsafat Indones., vol. 6, no. 3, pp. 474–485, 2023.

Komisi Pemilihan Umum, “Kilas Pemilu Tahun 2024,” Komisi Pemilihan Umum. p. 1, 2023. [Online]. Available: https://www.kpu.go.id/page/read/1136/kilas-pemilu-tahun-2024

Hidayah A., “Pentingnya Hasil Survei Jelang Pemilu Tahun 2024,” https://www.theindonesianinstitute.com/pentingnya-hasil-survei-jelang-pemilu-tahun-2024/. p. 1, 2021. [Online]. Available: https://www.theindonesianinstitute.com/pentingnya-hasil-survei-jelang-pemilu-tahun-2024/

M. R. Fais Sya’ bani, U. Enri, and T. N. Padilah, “Analisis Sentimen Terhadap Bakal Calon Presiden 2024 Dengan Algoritme Naïve Bayes,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 2, p. 265-273, Apr. 2022, doi: 10.30865/jurikom.v9i2.3989.

SindoNews, “Survei Litbang Kompas: Ganjar Pranowo Capres Pilihan Gen Z,” SindoNews. p. 1, 2023. [Online]. Available: https://nasional.sindonews.com/read/1219263/12/survei-litbang-kompas-ganjar-pranowo-capres-pilihan-gen-z-1696590636

N. Pratiwi and P. Nola, “The Effect of Digital Literacy on the Psychology of Children and Adolescents,” J. iIlmiah Progr. Stud. Pendidik. Bhs. dan Sastra Indones., vol. 6, no. 1, pp. 11–24, 2019.

K. Anwar, A. Syar'i, and F. Liadi, “Pemilihan presiden tahun 2019,” 2019.

H. Tuhuteru, “Analisis Sentimen Masyarakat Terhadap Pembatasan Sosial Berksala Besar Menggunakan Algoritma Support Vector Machine,” Inf. Syst. Dev., vol. 5, no. 2, pp. 7–13, 2020.

E. Febriyani and H. Februariyanti, “Analisis Sentimen Terhadap Program Kampus Merdeka Menggunakan Naive Bayes Di Twitter,” J. TEKNO KOMPAK, vol. 17, no. 2, pp. 25–38, 2022.

Y. Jianhua, W. U. Yang, L. U. Xin, Z. Yanyan, Q. I. N. Bing, and L. I. U. Ting, “Recent advances in deep learning based sentiment analysis,” pp. 1–24, 2020.

I. Muslim Karo Karo et al., “Analisis Sentimen Ulasan Aplikasi Info BMKG di Google Play Menggunakan TF-IDF dan Support Vector Machine,” J. Inf. Syst. Res., vol. 4, no. 4, pp. 1423–1430, 2023, doi: 10.47065/josh.v4i4.3943.

Y. A. Singgalen, “Analisis Performa Algoritma NBC, DT, SVM dalam Klasifikasi Data Ulasan Pengunjung Candi Borobudur Berbasis CRISP-DM,” Build. Informatics, Technol. Sci., vol. 4, no. 3, pp. 1634–1646, 2022, doi: 10.47065/bits.v4i3.2766.

Y. A. Pratama, F. Budiman, S. Winarno, and D. Kurniawan, “Analisis Optimasi Algoritma Decision Tree, Logistic Regression dan SVM Menggunakan Soft Voting,” J. Media Inform. Budidarma, vol. 7, pp. 1908–1919, 2023, doi: 10.30865/mib.v7i4.6856.

A. Jalu Narendra Kisma and C. Raras Ajeng Widiawati, “Analisis Aplikasi Di Playstore Berdasarkan Rating Dan Type Menggunakan Naive Bayes Dan Logistik Regresi,” Tek. Inform. dan Sist. Inf., vol. 10, no. 2, pp. 174–184, 2023, [Online]. Available: http://jurnal.mdp.ac.id

S. Platform, D. Resources, and P. Pricing, “The Beginner ’ s Guide To Web Scraping What is web scraping ?,” pp. 1–16.

N. A. Verdikha, R. Habid, and A. J. Latipah, “Analisis DistilBERT dengan Support Vector Machine (SVM) untuk Klasifikasi Ujaran Kebencian pada Sosial Media Twitter,” Metik J., pp. 101–110, 2023, doi: 10.47002/metik.v7i2.583.

D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” J. Sains Komput. Inform. (J-SAKTI, vol. 5, no. 2, pp. 697–711, 2021.

A. Hermawan, I. Jowensen, J. Junaedi, and Edy, “Implementasi Text-Mining untuk Analisis Sentimen pada Twitter dengan Algoritma Support Vector Machine,” JST (Jurnal Sains dan Teknol., vol. 12, no. 1, pp. 129–137, 2023, doi: 10.23887/jstundiksha.v12i1.52358.

A. Salsabila, J. J. Sihombing, and R. I. Sitorus, “Implementasi Algoritma Support Vector Machine Untuk Analisis Sentimen Aplikasi OLX di Playstore,” J. Informatics Data Sci., vol. 1, no. 2, 2022, doi: 10.24114/j-ids.v1i2.42597.

dan A. C. Ian Goodfellow, Yoshua Bengio, “Deep Learning,” Prmu, pp. 1–10, 2016, [Online]. Available: www.deeplearningbook.org


Refbacks

  • There are currently no refbacks.


Journal of Computer Science and Engineering (JCSE)
ISSN 2721-0251 (online)
Published by : ICSE (Institute of Computer Sciences and Engineering)
Website : http://icsejournal.com/index.php/JCSE/
Email: jcse@icsejournal.com

Creative Commons License is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.