Accuracy Assessment of Monthly Rainfall Predictions using Seasonal ARIMA and Long Short-Term Memory (LSTM)

Ahmad Aldizar Akbar(1), Yahya Darmawan(2), Arief Wibowo(3), Hayatul Khairul Rahmat(4),


(1) Universitas Budi Luhur (UBL)
(2) Sekolah Tinggi Meteorologi Klimatologi dan Geofisika (STMKG)
(3) Universitas Budi Luhur (UBL)
(4) Universitas Budi Luhur (UBL)

Abstract


Hydro meteorological disasters are common in Indonesia. Rainfall predictions can help mitigate the impact of these disasters. This research aims to compare the accuracy of monthly rainfall prediction models using Seasonal Autoregressive Integrated Moving Average (SARIMA) and Long Short-Term Memory (LSTM) methods. The input data consists of monthly rainfall records from four locations: Sampali, Kualanamu, Belawan, and Tuntungan, located around Medan, North Sumatra. The dataset spans from 2000 to 2020, with training data from 2000 to 2018 and test data from 2019 to 2020. The accuracy assessment reveals that Belawan has the largest RMSE values for both models, measuring 27.68 mm for LSTM and 28.36 mm for SARIMA. Belawan records the highest MAE values, with LSTM and SARIMA yielding 5.65 mm and 5.79 mm, respectively. SARIMA models effectively capture general trends and seasonality in linear time series data with clear patterns but struggle with extreme changes or sharp fluctuations due to their reliance on linear relationships. In contrast, LSTMs are effective at modeling complex, non-linear relationships, making them suitable for capturing general trends, seasonal patterns, and more complicated variations in the data. Understanding the characteristics of the data is crucial before applying SARIMA or LSTM models.


Keywords


SARIMA; LSTM; Machine Learning; Rainfall Data; Accuracy

Full Text:

PDF

References


E. S. Adiningsih, “Tinjauan Metode Deteksi Parameter Kekeringan Berbasis Data Penginderaan Jauh,” Pros. Semin. Nas. Penginderaan Jauh 2014, pp. 210–220, 2014. [Online]. Available: https://karya.brin.go.id/id/eprint/10889/.

T. Dyah, P. Pinuji, and Ikhwanudin, “Mitigasi Bencana Pada Bencana Hidrometeorologi di Indonesia,” Sci. Eng. Natl. Semin. 8 (SENS 8), vol. 8, no. 1, pp. 144–148, 2023, [Online]. Available: https://conference.upgris.ac.id/index.php/sens/article/view/4994

D. Setiawan, “Analisis Curah Hujan di Indonesia untuk Memetakan Daerah Potensi Banjir dan Tanah Longsor dengan Metode Cluster Fuzzy C-Means dan Singular Value Decompotition (SVD),” Eng. Math. Comput. Sci. J., vol. 3, no. 3, pp. 115–120, 2021, doi: 10.21512/emacsjournal.v3i3.7428.

W. Rahmalina and Novreta, “Peramalan Indeks Kekeringan Kelayang Menggunakan Metode Sarima dan SPI,” Potensi J. Sipil Politek., vol. 22, no. 1, pp. 64–75, 2020, doi: 10.35313/potensi.v22i1.1824.

A. Rosyida, R. Nurmasari, S. Bnpb, K. Data Spasial BNPB, and K. Kunci, “Analisis Perbandingan Dampak Kejadian Bencana Hidrometeorologi Dan Geologi Di Indonesia Dilihat Dari Jumlah Korban Dan Kerusakan (Studi: Data Kejadian Bencana Indonesia 2018),” J. Dialog Penanggulangan Bencana, vol. 10, no. 1, pp. 12–21, 2019. [Online]. Available: https://perpustakaan.bnpb.go.id/jurnal/index.php/JDPB/article/view/127/97.

A. Taufan Maulana and A. Andriansyah, “Mitigasi Bencana di Indonesia,” COMSERVA J. Penelit. dan Pengabdi. Masy., vol. 3, no. 10, pp. 3996–4012, 2024, doi: 10.59141/comserva.v3i10.1213.

S. Anwar, “Peramalan Suhu Udara Jangka Pendek di Kota Banda Aceh dengan Metode Autoregressive Integrated Moving Average (ARIMA),” Malikussaleh J. Mech. Sci. Technol., vol. 5, no. 1, p. 6, 2017, doi: 10.29103/mjmst.v5i1.10882.

L. J. Sinay, F. K. Lembang, S. N. Aulele, and D. Mustamu, “Analisis Curah Hujan Bulanan Di Kota Ambon Menggunakan Model Heteroskedastisitas: Sarima-Garch,” Media Stat., vol. 13, no. 1, pp. 68–79, 2020, doi: 10.14710/medstat.13.1.68-79.

S. J. and S. A., “A Comparative Analysis Of Web Information Extraction Techniques Deep Learning Vs. Naïve Bayes Vs. Back Propagation Neural Networks In Web Document Extraction,” ICTACT J. Soft Comput., vol. 06, no. 02, pp. 1123–1129, 2016, doi: 10.21917/ijsc.2016.0156.

M Devid Alam Carnegie and Chairani, “Perbandingan Long Short Term Memory (LSTM) dan Gated Recurrent Unit (GRU) Untuk Memprediksi Curah Hujan,” J. Media Inform. Budidarma, vol. 7, no. 3, pp. 1022–1032, 2023, doi: 10.30865/mib.v7i3.6213.

D. Desmonda, T. Tursina, and M. A. Irwansyah, “Prediksi Besaran Curah Hujan Menggunakan Metode Fuzzy Time Series,” J. Sist. dan Teknol. Inf., vol. 6, no. 4, p. 141, 2018, doi: 10.26418/justin.v6i4.27036.

M. R. Pahlevi, “Prediksi Harga Forex Menggunakan Algoritma Long Short-Term Memory,” Jnanaloka, pp. 69–76, 2023, doi: 10.36802/jnanaloka.2022.v3-no2-69-76.

A. M. Soetamto dan Ulfah, Metode ARIMA, Modul Pelatihan Peningkatan Akurasi Prakiraan Musim. Jakarta: Badan Meteorologi dan Geofisika, 2006.

A. Parasyris, G. Alexandrakis, G. V. Kozyrakis, K. Spanoudaki, and N. A. Kampanis, “Predicting Meteorological Variables on Local Level with SARIMA, LSTM and Hybrid Techniques,” Atmosphere (Basel)., vol. 13, no. 6, 2022, doi: 10.3390/atmos13060878.

U. M. Sirisha, M. C. Belavagi, and G. Attigeri, “Profit Prediction Using ARIMA, SARIMA and LSTM Models in Time Series Forecasting: A Comparison,” IEEE Access, vol. 10, no. December, pp. 124715–124727, 2022, doi: 10.1109/ACCESS.2022.3224938.

D. Wahyudi and I. V. Paputungan, “Pemodelan Curah Hujan Pada Kota Bengkulu Menggunakan Seasonal Autoregressive Integrated Moving Average (Sarima),” Automata, vol. 3, no. 2, 2022, [Online]. Available: https://journal.uii.ac.id/AUTOMATA/article/view/24319.

R. F. Firdaus, “Prediksi Curah Hujan Menggunakan Metode Long Short Term Memory (Studi Kasus: Kota Bandung),” M.S. thesis, Dept. Informatics Engineering, Univ. Islam Indonesia, Yogyakarta, Indonesia, Oct. 2022. [Online]. Available: https://dspace.uii.ac.id/handle/123456789/42746.

T. A. Faisal Muhammad and M. I. Irawan, “Implementasi Long Short-Term Memory (LSTM) untuk Prediksi Intensitas Curah Hujan (Studi Kasus: Kabupaten Malang),” J. Sains dan Seni ITS, vol. 12, no. 1, 2023, doi: 10.12962/j23373520.v12i1.106892.

T. Lattifia, P. Wira Buana, and N. K. D. Rusjayanthi, “Model Prediksi Cuaca Menggunakan Metode LSTM,” JITTER J. Ilm. Teknol. dan Komput., vol. 3, no. 1, pp. 994–1000, 2022. [Online]. Available: https://www.neliti.com/publications/431686/model-prediksi-cuaca-menggunakan-metode-lstm.

M. Rizki, S. Basuki, and Y. Azhar, “Implementasi Deep Learning Menggunakan Arsitektur Long Short Term Memory(LSTM) Untuk Prediksi Curah Hujan Kota Malang,” J. Repos., vol. 2, no. 3, pp. 331–338, 2020, doi: 10.22219/repositor.v2i3.470.

S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8. MIT Press, pp. 1735–1780, Nov. 01, 1997. doi: 10.1162/neco.1997.9.8.1735.

J. S. Armstrong, “Evaluating Forecasting Methods,” pp. 443–472, 2001, doi: 10.1007/978-0-306-47630-3_20.

D. Perdana and A. Muklason, “Machine Learning untuk Peramalan Kualitas Indeks Standar Pencemar Udara DKI Jakarta dengan Metode Hibrid ARIMAX-LSTM,” Ilk. J. Comput. Sci. Appl. Informatics, vol. 5, no. 3, pp. 209–222, 2023, doi: 10.28926/ilkomnika.v5i3.588.

M. Yusuf, A. Setyanto, and K. Aryasa, “Analisis Prediksi Curah Hujan Bulanan Wilayah Kota Sorong Menggunakan Metode Multiple Regression,” J. Sains Komput. Inform. (J-SAKTI, vol. 6, no. 1, pp. 405–417, 2022. doi: 10.30645/j-sakti.v6i1.455.

A. A. Suryanto, “Penerapan Metode Mean Absolute Error (Mea) Dalam Algoritma Regresi Linear Untuk Prediksi Produksi Padi,” Saintekbu, vol. 11, no. 1, pp. 78–83, 2019, doi: 10.32764/saintekbu.v11i1.298.

Hilda Nurfaidah and Wahyuni Abidin, “Penerapan Metode Single Moving Average Dalam Peramalan Curah Hujan Kota Makassar,” J. MSA ( Mat. dan Stat. serta Apl., vol. 11, no. 2, pp. 134–139, 2024, doi: 10.24252/msa.v11i2.45815.

R. M. Putra et al., “Prediksi Harian Suhu Udara Permukaan dengan Jaringan Syaraf Tiruan : Studi Kasus di Kawasan perkotaan dan Pesisir Jakarta, Indonesia,” Bul. GAW Bariri, vol. 4, no. 1, pp. 31–38, 2023, doi: 10.31172/bgb.v4i1.84.

S. C. Kafle and E. Hooda, “ARIMA and Exponential Smoothing Model to Forecast Average Annual Precipitation in Bharatpur, Nepal,” BMC Journal of Scientific Research, vol. 6, no. 1. Nepal Journals Online (JOL), pp. 113–125, Dec. 22, 2023. doi: 10.3126/bmcjsr.v6i1.60959.

R. M. Putra and N. Anjar Rani, “Prediksi Curah Hujan Harian di Stasiun Meteorologi Kemayoran Menggunakan Artificial Neural Network (ANN),” Bul. GAW Bariri, vol. 1, no. 2, pp. 101–108, 2020, doi: 10.31172/bgb.v1i2.35.


Refbacks

  • There are currently no refbacks.


Journal of Computer Science and Engineering (JCSE)
ISSN 2721-0251 (online)
Published by : ICSE (Institute of Computer Sciences and Engineering)
Website : http://icsejournal.com/index.php/JCSE/
Email: jcse@icsejournal.com

Creative Commons License is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.